Keyword: electron
Paper Title Other Keywords Page
MO2AA04 Electron Ion Collider Strong Hadron Cooling Injector and ERL cavity, linac, emittance, hadron 7
 
  • E. Wang, W.F. Bergan, F.J. Willeke
    BNL, Upton, New York, USA
  • S.V. Benson, K.E. Deitrick
    JLab, Newport News, Virginia, USA
  • D. Douglas
    Douglas Consulting, York, Virginia, USA
  • C.M. Gulliford
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • C.E. Mayes, N.W. Taylor
    Xelera Research LLC, Ithaca, New York, USA
  • J. Qiang
    LBNL, Berkeley, California, USA
 
  Funding: The work is supported by Brookhaven Science Associates, LLC under Contract No. DESC0012704 with the U.S. Department of Energy.
Intra-beam Scattering (IBS) and other diffusion mechanisms in the EIC Hadron Storage Ring (HSR) degrade the beam emittances during a store, with growth times of about 2 hours at the nominal proton energies of 275GeV, 100 GeV, and 41 GeV. Strong Hadron Cooling (SHC) can maintain good hadron beam quality and high luminosity during long collision stores. A novel cooling method ’ Coherent electron Cooling (CeC) ’ is chosen as the baseline SHC method, due to its high cooling rates. An Energy Recovery Linac (ERL) is used to deliver an intense high-quality electron beam for cooling. In this paper, we discuss the beam requirements for SHC-CeC and describe the current status of the injector and ERL designs. Two designs of injector and ERL will be presented: one for dedicated SHC and another one for SHC with precooler.
 
video icon
 
  please see instructions how to view/control embeded videos  
slides icon Slides MO2AA04 [4.436 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-MO2AA04  
About • Received ※ 23 August 2022 — Revised ※ 25 August 2022 — Accepted ※ 27 August 2022 — Issue date ※ 31 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOJO04 LightHouse - A Superconducting LINAC for Producing Medical Isotopes target, cathode, radiation, gun 35
 
  • J.M. Krämer, G. Blokesch, M. Grewe, B. Keune, V. Kümper, M. Pekeler, C. Piel, C. Quitmann, T.T. Trinh, P. vom Stein
    RI Research Instruments GmbH, Bergisch Gladbach, Germany
 
  The medical isoptope Mo-99 is used for diagnosing several 10 million patients every year. Up to now it is produced from enriched Uranium using high-flux neutron reactors. The Institute for Radio Elements (IRE), Belgium has ordered the design of a high-power superconducting linac for producing Mo-99 without use of nuclear fission as part of their SMART project. The LightHouse accelerator consists of a photo gun and 7 superconducting RF modules"*", a beam splitter and target illumination optics. It will deliver two electron beam of 75MeV and 1.5MW each. Photocathodes are prepared and transfered in-situ. We report on the design principles and the Beam Test Facility operating since April 2022.
*Based on Cornell CBeta design
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-MOPOJO04  
About • Received ※ 19 August 2022 — Revised ※ 24 August 2022 — Accepted ※ 26 August 2022 — Issue date ※ 01 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOJO07 Experimental Study to Optimize the Treatment Efficacy of Pharmaceutical Effluents by Combining Electron Beam Irradiation radiation, experiment, simulation, electronics 38
 
  • P. Kumar, A.B. Kavar, M. Meena, P. Nama, A. Pathak, R. Varma
    IIT Mumbai, Mumbai, India
  • A.P. Deshpande, T.S. Dixit, R. Krishnan
    SAMEER, Mumbai, India
 
  Here, we report our first step towards tackling this issue at the roots by irradiating the pharmaceutical effluents from a stages of their existing treatment plant with an Electron Beam (EB) with doses varying from 25 kGy to 200 kGy. We have used a normal conducting pulsed wave linear accelerator developed by SAMEER. It produced a pencil beam of electrons of energy 6 MeV with an average current of 16 micro-Ampere. To ensure optimum dose delivery, Fluka-Flair Simulations have been used. We have successfully demonstrated that electron beam irradiation along with the use of conventional techniques like coagulation after the irradiation can further increase the efficacy of the process with a final reduction in Chemical Oxygen Demand (COD) to be as large as 65% in some of the cases.  
poster icon Poster MOPOJO07 [0.745 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-MOPOJO07  
About • Received ※ 17 August 2022 — Revised ※ 21 August 2022 — Accepted ※ 26 August 2022 — Issue date ※ 01 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOJO08 RF Design, Optimization and Multiphysics Study of a β = 1, 1.3 GHz Single Cell Accelerating Cavity for High-Intensity Compact Superconducting Electron Accelerator (HICSEA) cavity, multipactoring, HOM, accelerating-gradient 41
 
  • M. Meena, A. Pathak, R. Varma
    IIT Mumbai, Mumbai, India
 
  High-energy electron accelerators have been used in water purification for several years. They are very effective for the removal of complex impurities. This study aims to design a superconducting electron beam accelerator with an output energy of 1 MeV and beam power of 40 kW for wastewater treatment. A 1.3 GHz single cell elliptic cavity with β = 1 was designed and optimized for TM010 mode and an accelerating gradient of 15 MV/m. For the optimized cavity, the RF parameters, namely, R/Q, transit time factor and geometry factor (G) were found to be 174.93 ohm, 0.67 and 276 ohm, respectively. Multiphysics studies showed that the value of R/Q for fundamental accelerating mode was 174.93 ohm. It was much higher than that of other modes, thus, HOM coupler is not required for the system. The Lorentz force detuning coefficient after stiffening the cavity iris, and the temperature rise due to the RF surface losses were found to be 0.20 Hz/(MV/m)2 and 0.085 K, respectively. It is also observed that there is no occurrence of multipacting for the designed accelerating gradient.  
poster icon Poster MOPOJO08 [1.584 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-MOPOJO08  
About • Received ※ 24 August 2022 — Revised ※ 26 August 2022 — Accepted ※ 01 September 2022 — Issue date ※ 05 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOJO09 A Compact Inverse Compton Scattering Source Based on X-Band Technology and Cavity-Enhanced High Average Power Ultrafast Lasers photon, laser, linac, cavity 44
 
  • A. Latina, R. Corsini, L.A. Dyks, E. Granados, A. Grudiev, V. Musat, S. Stapnes, W. Wuensch
    CERN, Meyrin, Switzerland
  • E. Cormier
    CELIA, Talence, France
  • L.A. Dyks
    Oxford University, Physics Department, Oxford, Oxon, United Kingdom
  • G. Santarelli
    ILE, Palaiseau Cedex, France
 
  A high-pulse-current injector followed by a short high-gradient X-band linac is considered as a driver for a compact Inverse Compton Scattering source. We show that using a high-power ultrashort pulse laser operating in burst mode and a Fabry-Pérot enhancement cavity, X-rays with flux values over 1013 ph/s and photon energies up to MeV are achievable. The resulting high-intensity and high-energy X-rays allow for various applications, including cancer therapy, tomography, and nuclear waste management. A preliminary conceptual design of such a compact ICS source is presented, together with simulations of the expected performance.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-MOPOJO09  
About • Received ※ 19 August 2022 — Revised ※ 30 August 2022 — Accepted ※ 01 September 2022 — Issue date ※ 06 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOJO10 The Linac Test Facility at Daresbury Laboratory linac, photon, operation, controls 47
 
  • A.E. Wheelhouse, R. Schnuerer
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • H.L. Gasson, N. Patel, D.H. Rowlands, I. Tahir
    Teledyne-e2v UK Ltd, Chelmsford, United Kingdom
  • R. Schnuerer
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
 
  The LINAC Test Facility (LTF) based at Daresbury Laboratory supports research and development of applications in medical, security, and environmental technologies through the operation of a Compact LINAC. This facility has been operated and upgraded over several years and this work has been performed in a collaboration between STFC and Teledyne e2v, enabling the facility to deliver an increased accelerating gradient of 6 MeV, which has broadened the capability to provide testing of radiotherapy and security scanning technologies. This paper de-scribes the developments undertaken, the benefits gained by both parties, and future planned improvements.  
poster icon Poster MOPOJO10 [0.707 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-MOPOJO10  
About • Received ※ 12 August 2022 — Revised ※ 19 August 2022 — Accepted ※ 01 September 2022 — Issue date ※ 13 October 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOJO11 Challenges for High-Energy X-Ray Security Screening Linacs linac, detector, cavity, photon 50
 
  • M. Jenkins, J. Ollier, M.G. Procter
    Rapiscan Systems Ltd, Stoke-on-Trent, United Kingdom
 
  X-ray based Cargo and Vehicle Inspection (CVI) systems are used for security and customs inspections at a variety of locations. To provide the maximum flexibility many users require mobile CVI systems to allow vehicles to be screened efficiently for threats and contraband. The need for mobile systems means that the linear accelerator, and ancillary systems, used to generate the x-rays must be compact, rugged, and reliable. These systems must meet image performance tests specified by American National Standards Institute (ANSI) and the International Electrotechnical Commission (IEC). The IEC also defines a standard for material discrimination. The requirements of these standards mean that the x-ray output produced by the linac needs to be consistent during and between scans, with the stability and repeatability of the output being critical. The tolerances on the linac output to meet the performance standards combined with the need for a compact system gives an unusual challenge for the linac design. A review of how different stability measures impact the performance tests is presented. This is compared to current technologies and possible future linacs used for mobile CVI systems.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-MOPOJO11  
About • Received ※ 24 August 2022 — Revised ※ 26 August 2022 — Accepted ※ 29 August 2022 — Issue date ※ 01 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOJO14 New X-Band and S-Band Linear Accelerators at Varex Imaging linac, gun, GUI, target 56
 
  • A.V. Mishin, B. Howe, J. Stammetti
    Varex Imaging, Salt Lake City, USA
 
  We have designed, built, and high power tested advanced linear accelerators equipped with our new 3 MeV X-Band Accelerator Beam Centerline ABC-3-X-T-X and a Reduced Spot (RS) S-Band ABC-7ER-S-T-RS-X with broad 3 MeV to 8 MeV energy regulation, which demonstrated excellent performance and superior beam quality. We are immensely proud of these recent accomplishments and would like to share the news with the community.  
poster icon Poster MOPOJO14 [0.350 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-MOPOJO14  
About • Received ※ 19 August 2022 — Revised ※ 21 August 2022 — Accepted ※ 28 August 2022 — Issue date ※ 16 October 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOJO15 Low Energy Linac for Electronic Brachytherapy radiation, simulation, target, linac 59
 
  • C.-J. Jing, P.V. Avrakhov, J.R. Callahan, B.T. Freemire, E. Gomez, R.A. Kostin, A. Liu, S. Miller, W. Si, Y. Zhao
    Euclid TechLabs, Solon, Ohio, USA
  • D.S. Doran, W. Liu, J.G. Power
    ANL, Lemont, Illinois, USA
  • C.G. Liu, M. Pankuch
    Northwestern University, Northwestern Medicine Proton Center, Warrenville, Illinois, USA
  • D. Mihalcea, P. Piot
    Northern Illinois University, DeKalb, Illinois, USA
  • W.D. Rush
    KU, Lawrence, Kansas, USA
  • J.S. Welsh
    Edward Hines Junior VA Hospital, Hines, Illinois, USA
 
  Funding: The project is supported by NNSA under Contract 89233121CNA000209.
The use of electronic brachytherapy (EB) has grown rapidly over the past decade. It is gaining significant interest from the global medical community as an improved user-friendly technology to reduce the usage of Ir-192. However, the present EB machines all use electron beams at energies of 100 kV or less to generate the X-ray photons, which limits their use to low dose-rate brachytherapy. We focus on the development of a compact and light weight 1-MeV linac to generate and deliver >250 kV X-ray photons to the patient. The device is intended to retrofit to existing brachytherapy applicators. In this paper we will report progress on this project.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-MOPOJO15  
About • Received ※ 20 August 2022 — Revised ※ 26 August 2022 — Accepted ※ 31 August 2022 — Issue date ※ 09 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOJO16 Cryogenic Accelerator Design for Compact Very High Energy Electron Therapy cavity, linac, coupling, distributed 62
 
  • E.J.C. Snively, V. Borzenets, G.B. Bowden, A.K. Krasnykh, Z. Li, C.D. Nantista, M. Oriunno, M. Shumail, S.G. Tantawi
    SLAC, Menlo Park, California, USA
  • B.W. Loo
    Stanford University, Stanford, California, USA
 
  Funding: This research has been supported by the U.S. Department of Energy (DOE) under Contract No. DE-C02-76SF00515.
We report on the development of a cryogenic X-band (11.424 GHz) accelerator to provide electron beams for Very High Energy Electron therapy. The distributed coupling linac is designed with a 135° phase advance, capable of producing a 100 MeV/m accelerating gradient in a one-meter structure using only 19 MW when operating at 77 K. This peak power will be achieved through pulse compression of a 5-8 MW few-µs pulse, ensuring compatibility with a commercial power source. We present designs of the cryogenic linac and power distribution system, as well as a room temperature pulse compressor using the HE11 mode in a corrugated cavity. We discuss scaling this compact and economical design into a 16 linac array that can achieve FLASH dose rates (> 40 Gy/s) while eliminating the downtime associated with gantry motion.
 
slides icon Slides MOPOJO16 [1.320 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-MOPOJO16  
About • Received ※ 14 August 2022 — Revised ※ 18 August 2022 — Accepted ※ 01 September 2022 — Issue date ※ 26 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOJO17 Design and Optimization of a 100 kV DC Thermionic Electron Gun and Transport Channel for a 1.3 GHz High Intensity Compact Superconducting Electron Accelerator (HICSEA) solenoid, gun, cathode, cavity 65
 
  • P. Nama, A. Pathak, R. Varma
    IIT Mumbai, Mumbai, India
 
  Here we present, the design and optimization of a 100 kV DC thermionic electron gun, and a transport channel that provides transverse focusing through a normal conducting solenoid and longitudinal bunching with the help of a single gap buncher for a 1.3 GHz, 40 kW, 1 MeV superconducting electron accelerator. The accelerator is proposed to treat various contaminants present in potable water resources. A 100 kV thermionic electron gun with LaB6 as its cathode material was intended to extract a maximum beam current of 500 mA. To minimize beam emittance, gun geometry i.e. cathode radius, and height and radius of the focusing electrode are optimized. The minimal obtained emittance at the gun exit is 0.3 mm.mrad. A normal conducting focusing solenoid with an iron encasing is designed and optimized to match and transport the beam from gun exit to the superconducting cavity. Finally, a 1.3 GHz ELBE type buncher is designed and optimized to bunch the electron beam for further acceleration.  
slides icon Slides MOPOJO17 [1.268 MB]  
poster icon Poster MOPOJO17 [0.813 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-MOPOJO17  
About • Received ※ 23 August 2022 — Revised ※ 24 August 2022 — Accepted ※ 27 August 2022 — Issue date ※ 31 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOJO18 Manipulation and Measurement of Polarization State for THz Coherent Undulator Radiation polarization, radiation, undulator, linac 69
 
  • S. Kashiwagi, H. Hama, F. Hinode, T. Muto, I. Nagasawa, K. Nanbu, H. Saito
    Tohoku University, Research Center for Electron Photon Science, Sendai, Japan
  • A. Irizawa
    ISIR, Osaka, Japan
  • H. Zen
    Kyoto University, Kyoto, Japan
 
  We are developing an accelerator-based terahertz source that can produce arbitrary polarization states from linearly polarized coherent undulator radiation (CUR). The polarization manipulation of the CUR can be realized using the Martin’Puplett interferometer employed as an optical phase shifter. This study also demonstrates a variable polarization manipulator by using the terahertz CUR (THz-CUR) source based on an extremely short electron bunch at Research Center for Electron Photon Science (ELPH), Tohoku University. The horizontally polarized CUR with a frequency of 1.9 THz was manipulated into variable polarization state, and Stokes parameters were measured to derive the degree of polarization. Beam experimental results will be presented in this conference.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-MOPOJO18  
About • Received ※ 09 September 2022 — Revised ※ 18 September 2022 — Accepted ※ 21 September 2022 — Issue date ※ 12 October 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOPA04 Simulation Study of an Accelerator-based THz FEL for Pump-Probe Experiments at the European XFEL FEL, simulation, undulator, experiment 83
 
  • P. Boonpornprasert, G.Z. Georgiev, M. Krasilnikov, X.-K. Li, A. Lueangaramwong
    DESY Zeuthen, Zeuthen, Germany
 
  The European XFEL considers to perform THz-pump and X-ray-probe experiments. A promising concept to provide the THz pulses with satisfactory properties for the experiments is to generate them using a linear accelerator-based free-electron laser (FEL). A simulation study of a THz FEL facility capable of generating powerful tunable coherent THz radiation that covers the wavelength range of 25 ’m to 100 ’m was performed. An accelerator beamline layout based on the Photo Injector Test Facility at DESY in Zeuthen (PITZ) and an APPLE-II undulator with a period length of 40 mm were used in the simulation study. Results of the study are presented and discussed in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-MOPOPA04  
About • Received ※ 25 August 2022 — Revised ※ 27 August 2022 — Accepted ※ 30 August 2022 — Issue date ※ 05 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOPA11 Laser-to-RF Synchronisation Drift Compensation for the CLARA test facility laser, detector, FEM, timing 87
 
  • J. Henderson, A.J. Moss, E.W. Snedden
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • A.C. Dexter
    Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
 
  Femtosecond synchronisation between charged particle beams and external laser systems is a significant challenge for modern particle accelerators. To achieve femtosecond synchronisation of the CLARA electron beam and end user laser systems will require tight synchronisation of several accelerator subsystems. This paper reports on a method to compensate for environmentally driven long-term drift in Laser-RF phase detection systems.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-MOPOPA11  
About • Received ※ 22 August 2022 — Revised ※ 26 August 2022 — Accepted ※ 01 September 2022 — Issue date ※ 15 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOPA12 Preserving Bright Electron Beams: Distorted CSR Kicks dipole, emittance, radiation, synchrotron-radiation 91
 
  • A. Dixon, T.K. Charles
    The University of Liverpool, Liverpool, United Kingdom
  • T.K. Charles, P.H. Williams
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • S. Thorin
    MAX IV Laboratory, Lund University, Lund, Sweden
  • P.H. Williams
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
 
  Short pulse, low emittance electron beams are necessary to drive bright FEL X-rays, for this reason it is important to preserve and limit emittance growth. The strong bunch compression required to achieve the short bunches, can lead to coherent synchrotron radiation (CSR)-induced emittance growth, and while there are some methods of CSR cancel- lation, these methods may be less effective when the CSR kicks are distorted. In an attempt to understand why CSR kicks become distorted, we compare the CSR kicks calcu- lated using the whole beam parameters to the CSR kicks calculated using the longitudinally sliced beam parameters, when propagated to the end of the bunch compressor. We find that CSR kicks can become distorted when calculated with non-uniform slice beam parameters. While slice beam parameters that are uniform along the centre of the bunch, do not result in distorted CSR kicks.  
poster icon Poster MOPOPA12 [1.553 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-MOPOPA12  
About • Received ※ 24 August 2022 — Revised ※ 26 August 2022 — Accepted ※ 27 August 2022 — Issue date ※ 31 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPORI03 Development of Quantum Gas Jet Beam Profile Monitor for Sub-mm Beams experiment, space-charge, focusing, factory 223
 
  • N. Kumar, O. Stringer, C.P. Welsch, J. Wolfenden, H.D. Zhang
    The University of Liverpool, Liverpool, United Kingdom
  • N. Kumar, C.P. Welsch, J. Wolfenden, H.D. Zhang
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • I. Maltusch
    FH Aachen, Jülich, Germany
 
  Funding: This work is supported by the STFC grants ST/W000687/1 and ST/W002159/1, InnovateUK Germinator 10004615, HL-LHC-UK project funded by STFC and CERN and the STFC Cockcroft core grant No. ST/G008248/1.
The development work of a high-resolution quantum gas jet beam profile monitor for highly energetic sub-mm particle beams is in progress at the Cockcroft Institute (CI), UK. This device is designed on the principle of detecting the secondary ions from the ionisation induced in the interaction between the quantum gas jet and charged particle beams. This monitor aims to generate an intense gas jet with a diameter of less than 100 µm, which can ultimately lead to superior position resolution and high signal intensity resulting from a strongly focused quantum gas jet. This is done by exploiting the quantum wave feature of the neutral gas atoms to generate an interference pattern with a single maximum acting as an ultra-thin gas jet using an ’atom sieve’ which is similar to the light focusing with a Fresnel zone plate. This device will be minimally interceptive and will work analogously to a mechanical wire scanner. This contribution gives a general overview of the design, working principle of the monitor and experimental results obtained from the electron beam profile measurements carried out at the Cockcroft Institute.
 
poster icon Poster MOPORI03 [1.581 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-MOPORI03  
About • Received ※ 13 August 2022 — Revised ※ 16 August 2022 — Accepted ※ 30 August 2022 — Issue date ※ 01 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPORI04 A Gas Jet Beam Halo Monitor for LINACs simulation, experiment, extraction, background 227
 
  • O. Stringer, N. Kumar, C.P. Welsch, H.D. Zhang
    The University of Liverpool, Liverpool, United Kingdom
  • N. Kumar, O. Stringer, C.P. Welsch, H.D. Zhang
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
 
  The gas jet beam profile monitor is a non-invasive beam monitor that is currently being commissioned at the Cockcroft Institute. It utilises a supersonic gas curtain which traverses the beam perpendicular to its propagation and measures beam-induced ionisation interactions of the gas. A 2D transverse beam profile image is created by orientating the gas jet 45 degrees to obtain both X and Y distributions of the beam. This paper builds upon previously used single-slit skimmers and improves their ability to form the gas jet into a desired distribution for imaging beam halo. A skimmer device removes off-momentum gas particles and forms the jet into a dense thin curtain, suitable for transverse imaging of the beam. The use of a novel double-slit skimmer is shown to provide a mask-like void of gas over the beam core, increasing the relative intensity of the halo interactions for measurement. Such a non-invasive monitor would be beneficial to linacs by providing real time beam characteristic measurements without affecting the beam. More specifically, beam halo behaviour is a key characteristic associated with beam losses within linacs.  
poster icon Poster MOPORI04 [1.066 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-MOPORI04  
About • Received ※ 24 August 2022 — Revised ※ 26 August 2022 — Accepted ※ 31 August 2022 — Issue date ※ 13 October 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPORI08 Beam Mapping Linearity Improvement in Multi-Dimensional Bunch Shape Monitor cavity, focusing, detector, operation 239
 
  • S.V. Kutsaev, R.B. Agustsson, A.C. Araujo Martinez, A. Moro, A.Yu. Smirnov, K.V. Taletski
    RadiaBeam, Santa Monica, California, USA
  • A.V. Aleksandrov, A.A. Menshov
    ORNL, Oak Ridge, Tennessee, USA
 
  Funding: This work was supported by the U.S. Department of Energy , Office of Basic Energy Sciences, under contract DE-SC0020590.
RadiaBeam is developing a Bunch Shape Monitor (BSM) with improved performance that incorporates three major innovations. First, the collection efficiency is im-proved by adding a focusing field between the wire and the entrance slit. Second, a new design of an RF deflector improves beam linearity. Finally, the design is augmented with both a movable wire and a microwave deflecting cavity to add functionality and enable measuring the transverse profile as a wire scanner. In this paper, we pre-sent the design of the BSM and its sub-systems.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-MOPORI08  
About • Received ※ 24 August 2022 — Revised ※ 01 September 2022 — Accepted ※ 02 September 2022 — Issue date ※ 09 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPORI09 Linear Accelerator for Demonstration of X-Ray Radiotherapy with Flash Effect linac, solenoid, radiation, target 243
 
  • S.V. Kutsaev, R.B. Agustsson, S. Boucher, K. Kaneta, A.Yu. Smirnov, V.S. Yu
    RadiaBeam, Santa Monica, California, USA
  • A.R. Li, K. Sheng
    UCLA, Los Angeles, California, USA
 
  Funding: This project is funded by NIH, award number NIH R01CA255432.
Emerging evidence indicates that the therapeutic window of radiotherapy can be significantly increased using ultra-high dose rate dose delivery (FLASH), by which the normal tissue injury is reduced without compromising tumor cell killing. The dose rate required for FLASH is 40 Gy/s or higher, 2-3 orders of magnitude greater than conventional radiotherapy. Among the major technical challenges in achieving the FLASH dose rate with X-rays is a linear accelerator that is capable of producing such a high dose rate. We will discuss the design of a high dose rate 18 MeV linac capable of delivering 100 Gy/s of collimated X-rays at 20 cm. This linac is being developed by a RadiaBeam/UCLA collaboration for a preclinical system as a demonstration of the FLASH effect in small animals.
 
slides icon Slides MOPORI09 [0.954 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-MOPORI09  
About • Received ※ 19 August 2022 — Revised ※ 22 August 2022 — Accepted ※ 29 August 2022 — Issue date ※ 02 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPORI10 First Studies of 5D Phase-Space Tomography of Electron Beams at ARES simulation, emittance, experiment, quadrupole 247
 
  • S. Jaster-Merz, R.W. Aßmann, R. Brinkmann, F. Burkart, T. Vinatier
    DESY, Hamburg, Germany
  • R.W. Aßmann
    LNF-INFN, Frascati, Italy
 
  A new beam diagnostics method to reconstruct the full 5-dimensional phase space (x, x’, y, y’, t) of bunches has recently been proposed. This method combines a quadrupole-based transverse phase-space tomography with the variable streaking angle of a polarizable X-band transverse deflecting structure (PolariX TDS). Two of these novel structures have recently been installed at the ARES beamline at DESY, which is a linear accelerator dedicated to accelerator research and development, including advanced diagnostics methods and novel accelerating techniques. In this paper, realistic simulation studies in preparation for planned experimental measurements are presented using the beamline setup at ARES. The reconstruction quality of the method for three beam distributions is studied and discussed, and it is shown how this method will allow the visualization of detailed features in the phase-space distribution.  
slides icon Slides MOPORI10 [0.808 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-MOPORI10  
About • Received ※ 22 August 2022 — Revised ※ 27 August 2022 — Accepted ※ 01 September 2022 — Issue date ※ 09 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TU1PA01 A Discussion of Key Concepts for the Next Generation of High Brightness Injectors FEL, gun, brightness, cathode 324
 
  • T.G. Lucas, P. Craievich, S. Reiche
    PSI, Villigen PSI, Switzerland
 
  The production of high brightness electron beams has been key to the success of the X-ray free-electron laser (XFEL) as the new frontier in X-ray sources. The past two decades have seen the commissioning of numerous XFEL facilities, which quickly surpassed Synchrotron light sources to become the most brilliant X-ray sources. Such facilities have, so far, heavily relied on room temperature S-band RF photoguns to produce the high brightness electron bunches required for lasing, however such photoguns are reaching their peak performance limit and new methods must be investigated to continue to increase the brightness of these facilities. This talk will begin with a review of the design and performance of several electron guns currently operational in XFELs. Following will be a discussion of current efforts in continuing to increase this peak brightness including moving to cold cathode schemes and the use of very high gradients on the cathode. Finally we will describe ongoing activities at PSI to develop the next generation of high gradient RF photoguns for increased peak brightness.  
video icon
 
  please see instructions how to view/control embeded videos  
slides icon Slides TU1PA01 [1.781 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-TU1PA01  
About • Received ※ 24 August 2022 — Revised ※ 27 August 2022 — Accepted ※ 07 September 2022 — Issue date ※ 16 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOJO06 Design and Test of Beam Diagnostics Equipment for the FAIR Proton Linac linac, proton, diagnostics, beam-diagnostic 348
 
  • T. Sieber, P. Forck, C.M. Kleffner, S. Udrea
    GSI, Darmstadt, Germany
  • I. Bustinduy, .A. Rodríguez Páramo
    ESS Bilbao, Zamudio, Spain
  • J. Herranz
    Proactive Research and Development, Sabadell, Spain
  • A. Navarro Fernandez
    CERN, Meyrin, Switzerland
 
  A dedicated proton injector Linac (pLinac) for the Facility of Antiproton and Ion Research (FAIR) at GSI, Darmstadt, is currently under construction. It will pro-vide a 68 MeV, up to 70 mA proton beam at a duty cycle of max. 35µs / 4 Hz for the SIS18 synchrotron, using the UNILAC transfer beamline. After further acceleration in SIS100, the protons are mainly used for antiproton production at the Antiproton Annihilation Darmstadt (PANDA) experiment. The Linac will operate at 325 MHz and consists of a novel so called ’Ladder’ RFQ type, followed by a chain of CH-cavities, partially coupled by rf-coupling cells. In this paper we present the beam diagnostics system for the pLinac with special emphasis on the Secondary Electron Emission (SEM) Grids and the Beam Position Monitor (BPM) system. We also describe design and status of our diagnostics testbench for stepwise Linac commissioning, which includes an energy spectrometer with associated optical system. The BPMs and SEM grids have been tested with proton and argon beam during several beamtimes in 2022. The results of these experiments are presented.  
poster icon Poster TUPOJO06 [3.264 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-TUPOJO06  
About • Received ※ 24 August 2022 — Revised ※ 01 September 2022 — Accepted ※ 02 September 2022 — Issue date ※ 07 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOJO17 High Efficiency High Power Resonant Cavity Amplifier For PIP-II cavity, coupling, impedance, network 384
 
  • R.E. Simpson, N. Butler, D.B. Cope, M.P.J. Gaudreau, M.K. Kempkes
    Diversified Technologies, Inc., Bedford, Massachusetts, USA
 
  An advanced high-power, high power density, solid state power amplifier (SSPA) was developed to replace Vacuum Electron Devices (VEDs). Diversified Technologies, Inc. (DTI) developed and integrated a resonant-cavity combiner with solid state amplifiers for the Proton Improvement Plan-II (PIP-II) at Fermilab. The architecture combines the power of N-many RF power transistors into a single resonant cavity that are surface-mounted and -cooled. The system is designed so that failure of individual transistors has negligible performance impact. Due to the electrical and mechanical simplicity, maintenance and logistics are simplified. DTI demonstrated the basic feasibility of a 50-100 kW class amplifier resonant cavity combiner system at 650 MHz. A single-cavity system reached 15 kW at 66% power-added efficiency with ten of 12 slots filled on only 1 of 2 cavities faces. The system further demonstrated the expected graceful degradation; an intermittent fault occurred on 1 of the 10 modules and the only observable effect was a reduction in output power to 13.3 kW with a slight reduction in efficiency. Combining of multiple cavities was also demonstrated at low power.  
poster icon Poster TUPOJO17 [0.790 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-TUPOJO17  
About • Received ※ 16 August 2022 — Revised ※ 25 August 2022 — Accepted ※ 28 August 2022 — Issue date ※ 15 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOPA06 Microscopy Investigation on Different Materials After Pulsed High Field Conditioning and Low Energy H-Irradiation radiation, experiment, detector, cathode 422
 
  • C.F. Da Palma Serafim, G. Bellodi, S. Calatroni, A. Grudiev, A.M. Lombardi, R.C. Peacock, A.T. Perez Fontenla, S. Ramberger, E. Sargsyan, S. Sgobba, W. Wuensch
    CERN, Meyrin, Switzerland
  • F. Djurabekova
    HIP, University of Helsinki, Finland
 
  During operation the LINAC4 RFQ (Radio-Frequency-Quadrupole) is exposed to high electric fields which can lead to vacuum breakdown. It is also subject to beam loss that can cause surface modification, including blistering, which can result in reduced electric field handling and an increased breakdown rate. An experimental study has been made to identify materials with high electric field capability and robustness to low-energy irradiation. In this paper we briefly discuss the selection criteria and we analyze these materials investigating their metallurgical properties using advanced microscopic techniques such as Scanning Electron Microscope, Electron Back Scattered Diffraction, Energy-dispersive X-ray Spectroscopy and conventional optical microscopy. These allow to observe and characterize the different materials on aμand a nano-scale, allowing us to compare results before and after irradiation and breakdown testing.  
poster icon Poster TUPOPA06 [2.771 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-TUPOPA06  
About • Received ※ 14 August 2022 — Revised ※ 23 August 2022 — Accepted ※ 29 August 2022 — Issue date ※ 31 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOPA15 Multipactor Studies: Simulations and Measurements on the RF Coaxial Resonator Test Bench multipactoring, simulation, cavity, experiment 445
 
  • Y. Gómez Martínez, J. Angot, M.A. Baylac, T. Cabanel, M. Meyer
    LPSC, Grenoble Cedex, France
  • D. Longuevergne, G. Sattonnay
    Université Paris-Saclay, CNRS/IN2P3, IJCLab, Orsay, France
 
  Multipactor is an undesired phenomenon triggered by electromagnetic fields in accelerator components and more specifically in RF structures, such as accelerating cavities and power couplers, and may lead to Electron Cloud build up in beam tubes. The accelerator group at LPSC has developed an experimental setup dedicated to multipactor studies. It consists in a coaxial resonator, tunable and operational between 100 MHz and 1 GHz. It allows to characterize under real conditions the efficiency of surface treatment mitigation processes (coatings, cleaning procedures) at room temperature. This paper presents the experimental measurements performed with this setup confronted to simulations.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-TUPOPA15  
About • Received ※ 12 August 2022 — Revised ※ 30 August 2022 — Accepted ※ 01 September 2022 — Issue date ※ 16 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOPA16 Complete Study of the Multipactor Phenomenon for the MYRRHA 80 kW CW RF Couplers multipactoring, simulation, cavity, linac 448
 
  • Y. Gómez Martínez, P.-O. Dumont, M. Meyer
    LPSC, Grenoble Cedex, France
  • P. Duchesne, C. Joly, W. Kaabi
    Université Paris-Saclay, CNRS/IN2P3, IJCLab, Orsay, France
 
  MYRRHA [1] (Multi Purpose Hybrid Reactor for High Tech Applications) is an Accelerator Driven System (ADS) project. Its superconducting linac will provide a 600 MeV - 4 mA proton beam. The first project phase based on a 100 MeV linac is launched. The Radio-Frequency (RF) couplers have been designed to handle 80 kW CW (Continuous Wave) at 352.2 MHz. This paper describes the multipacting studies on couplers.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-TUPOPA16  
About • Received ※ 12 August 2022 — Revised ※ 22 August 2022 — Accepted ※ 01 September 2022 — Issue date ※ 05 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOPA17 Solving the USB Communication Problem of the High-Voltage Modulator Control System in the European XFEL controls, interface, FEL, operation 451
 
  • M. Bousonville, S. Choroba, T. Grevsmühl, S. Göller, A. Hauberg, T. Weinhausen
    DESY, Hamburg, Germany
 
  Since the commissioning of the modulators in the European XFEL in 2016, it happened from time to time that the modulator control system hung up. The reason for the problem was unknown at that time. Initially, the MTBF (Mean Time Between Failure) was 104 days, which was so rare that other problems with the RF system clearly dominated and were addressed first. Over the next 2 years, the error became more frequent and occurred on average every 18 days. After the winter shutdown of the XFEL in 2020, the problem became absolutely dominant, with an MTBF of 2 days. Therefore, the fault was investigated with top priority and was finally identified. Two units of the control electronics communicate via USB 2.0 with the main server. Using special measurement technology, it was possible to prove that weak signal levels in the USB signal led to bit errors and thus to the crash of the control electronics. This article describes the troubleshooting process, how to measure the signal quality of USB signals and how the problem was solved in the end.  
poster icon Poster TUPOPA17 [6.650 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-TUPOPA17  
About • Received ※ 22 August 2022 — Revised ※ 19 August 2022 — Accepted ※ 29 August 2022 — Issue date ※ 15 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOPA24 Design of an X-Band Bunching and Accelerating System for AWAKE Run 2 cavity, acceleration, bunching, gun 458
 
  • J.M. Arnesano, S. Döbert
    CERN, Meyrin, Switzerland
 
  The AWAKE experiment at CERN demonstrated in its Run 1 that it is possible to accelerate electrons in plasma wakefields driven by a self-modulated proton bunch. In Run2, AWAKE aims to increase the accelerating gradient in the plasma even further and demonstrate beam quality in order to be ready for high-energy physics experiments. In this framework, a new electron injector, consisting of an S-band RF-gun and a subsequent X-band bunching and accelerating section, capable of producing very short bunches with a small emittance, has been designed. In this paper, two different configurations of the X-band section and their corresponding high-power distribution systems are presented. The first one consists of three identical cavities to bunch and accelerate the beam while the second one uses a separate short structure for velocity bunching followed by three long, pure accelerating structures. A discussion of the strengths and weaknesses of each configuration is carried out and beam dynamics aspects are analyzed. Finally the X-Band power distribution systems are described with particular attention to the choice of the klystron, the pulse compression system and the waveguide distribution.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-TUPOPA24  
About • Received ※ 12 August 2022 — Revised ※ 21 August 2022 — Accepted ※ 01 September 2022 — Issue date ※ 16 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOPA30 Innovative Magnetron Power Sources for SRF Linacs cathode, cavity, simulation, power-supply 473
 
  • M. Popovic, M.A. Cummings, A. Dudas, R.P. Johnson, R.R. Lentz, M.L. Neubauer, T. Wynn
    Muons, Inc, Illinois, USA
  • T. Blassick, J.K. Wessel
    Richardson Electronics Ltd, Lafox, Illinois, USA
  • K. Jordan, R.A. Rimmer, H. Wang
    JLab, Newport News, Virginia, USA
 
  Funding: Supported in part by US Department of Energy Nuclear Physics SBIR Grant DE-SC0022484
Magnetron RF power sources for single cavities can cost much less and operate at much higher efficiency than klystrons, but they do not have the phase and amplitude control, or the lifetime, needed to drive SRF cavities for superconducting particle accelerators. Existing magnetrons that are typically used to study methods of control or lifetime improvements for SRF accelerators are built for much different applications such as kitchen microwave ovens (1kW, 2.45 GHz) or industrial heating (100 kW, 915 MHz). Muons, Inc. is working with Richardson Electronics LLC to develop fast and flexible manufacturing techniques to allow many ideas to be tested for construction variations that enable new phase and amplitude injection locking control methods, longer lifetime, and inexpensive refurbishing resulting in the lowest possible life-cycle costs. A magnetron suitable for 1497 MHz klystron replacements at Jefferson Lab has been designed, constructed, and tested.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-TUPOPA30  
About • Received ※ 16 August 2022 — Revised ※ 26 August 2022 — Accepted ※ 29 August 2022 — Issue date ※ 01 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPORI12 Beam Dynamics for the MAX IV Transverse Deflecting Cavity Beamline linac, quadrupole, emittance, optics 565
 
  • N. Blaskovic Kraljevic, L. Isaksson, E. Mansten, S. Thorin
    MAX IV Laboratory, Lund University, Lund, Sweden
 
  The MAX IV 3 GeV linac delivers electron beams to two synchrotron rings and to a dedicated undulator system for X-ray beam delivery in the Short Pulse Facility (SPF). In addition, there are plans to use the linac as an injector for a future Soft X-ray Laser (SXL). For both SPF and SXL operations, longitudinal beam characterisation with a high temporal resolution is essential. For this purpose, a transverse deflecting cavity (TDC) system has been developed and is being installed in a dedicated electron beamline branch located downstream of the 3 GeV linac. This beamline consists of two consecutive 3 m long transverse S-band RF structures, followed by a variable vertical deflector dipole magnet used as an energy spectrometer. This conference contribution presents the beam dynamics calculations for the beam transport along the TDC beamline, and in particular the optics configurations for slice emittance and slice energy spread measurements. The operation of an analysis algorithm for use in the control room is discussed. The aim is to provide 1 fs temporal measurement resolution to access the bunch duration of highly compressed bunches and slice parameters for sub-10-fs bunches.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-TUPORI12  
About • Received ※ 24 August 2022 — Revised ※ 25 August 2022 — Accepted ※ 01 September 2022 — Issue date ※ 15 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPORI14 A Start-to-End Optimisation Strategy for the CompactLight Accelerator Beamline FEL, undulator, emittance, simulation 573
 
  • Y. Zhao, A. Latina
    CERN, Meyrin, Switzerland
  • A. Aksoy
    Ankara University, Accelerator Technologies Institute, Golbasi, Turkey
  • H.M. Castañeda Cortés, D.J. Dunning, N. Thompson
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
 
  The CompactLight collaboration designed a compact and cost-effective hard X-ray FEL facility, complemented by a soft X-ray option, based on X-band acceleration, capable of operating at 1 kHz pulse repetition rate. In this paper, we present a new simple start-to-end optimisation strategy that is developed for the CompactLight accelerator beamline, focusing on the hard X-ray mode. The optimisation is divided into two steps. The first step improves the electron beam quality that finally leads to a better FEL performance by optimising the major parameters of the beamline. The second step provides matched twiss parameters for the FEL undulator by tuning the matching quadrupoles at the end of the accelerator beamline. A single objective optimisation method, with different objective functions, is used to optimise the performance. The sensitivity of the results to jitters is also minimised by including their effects in the final objective function.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-TUPORI14  
About • Received ※ 15 August 2022 — Revised ※ 31 August 2022 — Accepted ※ 31 August 2022 — Issue date ※ 15 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPORI16 The PSI Positron Production Project positron, cavity, solenoid, emittance 577
 
  • N. Vallis, B. Auchmann, P. Craievich, M. Duda, H. Garcia Rodrigues, J. Kosse, F. Marcellini, M. Schaer, R. Zennaro
    PSI, Villigen PSI, Switzerland
 
  Funding: CHART (Swiss Accelerator Research and Technology)
The PSI Positron Production project (P3 or P-cubed) is a demonstrator for a novel positron source for FCC-ee. The high current requirements of future colliders can be compromised by the extremely high positron emittance at the production target and consequent poor capture and transport to the damping ring. However, recent advances in high-temperature superconductors allow for a highly efficient matching of such an emittance through the use a solenoid around the target delivering a field over 10 T on-axis. Moreover, the emittance of the matched positron beam can be contained through large aperture RF cavities surrounded by a multi-Tesla field generated by conventional superconducting solenoids, where simulations estimate a yield higher by one order of magnitude with respect to the state-of-the-art. The goal of P3 is to demonstrate this basic principle by implementing the aforementioned solenoids into a prototype positron source based on a 6 GeV electron beam from the SwissFEL linac, two RF capture cavities and a beam diagnostics section.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-TUPORI16  
About • Received ※ 15 August 2022 — Revised ※ 24 August 2022 — Accepted ※ 02 September 2022 — Issue date ※ 09 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPORI18 The Design of the Full Energy Beam Exploitation (FEBE) Beamline on CLARA experiment, laser, diagnostics, FEL 585
 
  • D. Angal-Kalinin, A.R. Bainbridge, J.K. Jones, T.H. Pacey, Y.M. Saveliev, E.W. Snedden
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
 
  The CLARA facility at Daresbury Laboratory was orig-inally designed for the study of novel FEL physics utilis-ing high-quality electron bunches at up to 250 MeV/c. To maximise the exploitation of the accelerator complex, a dedicated full energy beam exploitation (FEBE) beam-line has been designed and is currently being installed in a separate vault on the CLARA accelerator. FEBE will allow the use of high charge (up to 250 pC), moderate energy (up to 250 MeV), electron bunches for a wide variety of accelerator applications critical to ongoing accelerator development in the UK and international communities. The facility consists of a shielded enclo-sure, accessible during beam running in CLARA, with two very large experimental chambers compatible with a wide range of experimental proposals. High-power laser beams (up to 100 TW) will be available for electron-beam interactions in the first chamber, and there are concrete plans for a wide variety of advanced diagnostics (includ-ing a high-field permanent magnet spectrometer and dielectric longitudinal streaker), essential for multiple experimental paradigms, in the second chamber. FEBE will be commissioned in 2024.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-TUPORI18  
About • Received ※ 19 August 2022 — Revised ※ 23 August 2022 — Accepted ※ 28 August 2022 — Issue date ※ 15 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPORI29 Space Charge and Electron Confinement in High Current Low Energy Transport Lines: Experience and Simulations From IFMIF/EVEDA and ESS Commissioning rfq, LEBT, extraction, ion-source 618
 
  • L. Bellan, M. Comunian, F. Grespan, A. Pisent
    INFN/LNL, Legnaro (PD), Italy
  • E.M. Donegani, M. Eshraqi, F. Grespan, B. Jones, E. Laface, Y. Levinsen, N. Milas, R. Miyamoto, D. Noll, D.C. Plostinar, A.G. Sosa
    ESS, Lund, Sweden
  • L. Neri
    INFN/LNS, Catania, Italy
 
  The mechanism of space charge compensation given by the residual gas ionization is a key factor for the emittance containment in the low energy beam transport (LEBT) lines of high intensity hadron injectors. A typical front end including a microwave Ion source, a LEBT and Radio Frequency Quadrupole (RFQ), is equipped with two repellers at each interface to prevent electrons from flowing back, to the source, or forward, to the RFQ. In this paper we will emphasize the importance of the ion Source and LEBT repellers on giving the appropriate boundary conditions for the space-charge compensation building-up mechanism. The theory and simulations are supported by experiments performed in the high intensity facility such as ESS and IFMIF/EVEDA.  
slides icon Slides TUPORI29 [1.633 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-TUPORI29  
About • Received ※ 23 August 2022 — Revised ※ 03 September 2022 — Accepted ※ 06 September 2022 — Issue date ※ 15 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WE1AA02 Run 2 of the Advanced Plasma Wakefield Experiment (AWAKE) at CERN plasma, proton, experiment, wakefield 625
 
  • G. Zevi Della Porta
    CERN, Meyrin, Switzerland
 
  After successful completion of Run 1 of the Advanced Plasma Wakefield Experiment (AWAKE) at CERN, the experiment started Run 2 in 2021. The goals of AWAKE Run 2 are to accelerate electrons in proton-beam-driven plasma wakefields to high energies with gradients of up to 1 GV/m while preserving the electron beam normalized emittance at the 10 um level, and to demonstrate the acceleration of electrons in scalable plasma sources to 50-100 GeV. The first milestone towards these final goals is to demonstrate electron seeding of the self-modulation of the entire proton bunch. This was achieved in the 2021 run and some highlight results are shown. In the next phases of AWAKE Run 2, a new X-band electron source will provide a 150 MeV, 200 fs, 100 pC electron beam, to be accelerated in the plasma wakefields.  
video icon
 
  please see instructions how to view/control embeded videos  
slides icon Slides WE1AA02 [23.386 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-WE1AA02  
About • Received ※ 22 August 2022 — Revised ※ 30 August 2022 — Accepted ※ 31 August 2022 — Issue date ※ 16 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WE1AA03 FACET-II plasma, experiment, laser, diagnostics 631
 
  • C.I. Clarke, J.M. Allen, L.E. Alsberg, A.L. Edelen, H.E. Ekerfelt, C. Emma, E. Gerstmayr, S.J. Gessner, C. Hast, M.J. Hogan, M.D. Litos, R. Loney, S. Meuren, S.A. Miskovich, B.D. O’Shea, M. Parker, D.A. Reis, D.W. Storey, R. Watt, G. Yocky
    SLAC, Menlo Park, California, USA
  • R. Ariniello, C.E. Doss, V. Lee
    CIPS, Boulder, Colorado, USA
  • G.J. Cao
    University of Oslo, Oslo, Norway
  • S. Corde, A. Knetsch, P. San Miguel Claveria
    LOA, Palaiseau, France
  • C.E. Hansel
    Colorado University at Boulder, Boulder, Colorado, USA
  • C. Joshi, K.A. Marsh, Z. Nie, C. Zhang
    UCLA, Los Angeles, California, USA
  • J. Wang
    UNL, Lincoln, Nebraska, USA
 
  Funding: This work performed under DOE Contract DE-AC02-76SF00515 and also supported under FES Award DE-SC0020076.
FACET-II is a National User Facility at SLAC National Accelerator Laboratory providing 10 GeV electron beams with um-rad normalised emittance and peak currents exceeding 100 kA . FACET-II operates as a National User Facility while engaging a broad User community to develop and execute experimental proposals that advance the development of plasma wakefield accelerators. FACET-II is currently commissioned and has started with first experiments. The special features of FACET-II will be shown and first results from the experiments.
 
video icon
 
  please see instructions how to view/control embeded videos  
slides icon Slides WE1AA03 [6.471 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-WE1AA03  
About • Received ※ 20 August 2022 — Revised ※ 23 August 2022 — Accepted ※ 01 September 2022 — Issue date ※ 04 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WE2AA01 The CompactLight Design Study FEL, linac, photon, undulator 642
 
  • A. Latina
    CERN, Meyrin, Switzerland
  • G. D’Auria, R.A. Rochow
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
 
  CompactLight (XLS) is an H2020 Design Study funded by the European Union under grant agreement No. 777431 and carried out by an international collaboration of 23 international laboratories and academic institutions, three private companies, and five third parties. The project, which started in January 2018 with a duration of 48 months, aimed to design an innovative, compact, and cost-effective hard X-ray FEL facility complemented by a soft X-ray source. In December 2021, the Conceptual Design Report was completed. The result is an accelerator that can be operated at up to 1 kHz pulse repetition rate, beyond today’s state of the art, using the latest concepts for high brightness electron photoinjectors, very high gradient accelerating structures in X-band, and novel short-period undulators. This paper gives an overview of the current status, focusing particularly on the technological challenges addressed and their future applications to compact accelerator-based facilities.  
video icon
 
  please see instructions how to view/control embeded videos  
slides icon Slides WE2AA01 [6.522 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-WE2AA01  
About • Received ※ 19 August 2022 — Revised ※ 25 August 2022 — Accepted ※ 30 August 2022 — Issue date ※ 02 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WE2AA02 RELIEF: Tanning of Leather with e-beam simulation, site, radiation, FEL 645
 
  • R. Apsimon, D.A. Turner
    Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
  • K.A. Dewhurst
    CERN, Meyrin, Switzerland
  • S. Setiniyaz
    Lancaster University, Lancaster, United Kingdom
  • R. Seviour
    University of Huddersfield, Huddersfield, United Kingdom
  • W.R. Wise
    University of Northampton, Northampton, United Kingdom
 
  Funding: STFC through the grant reference ST/S002189/1, and the Cockcroft Institute core grant, STFC grant reference ST/P002056/1.
Tanning of leather for clothing, shoes and handbags uses potentially harmful chemicals that are often run off into local water supplies or require a large carbon footprint to safely recover these pollutants. In regions of the world with significant leather production this can lead to a significant environmental impact. However recent studies have suggested that leather can instead be tanned using a combination of electron beams in a process inspired by the industrial crosslinking of polymers, to drastically reduce the quantity of wastewater produced in the process; thereby resulting in a reduced environmental impact as well as potential cost savings on wastewater treatment. In this talk, initial studies of leather tanning will be presented as well as accelerator designs for use in leather irradiation.
 
video icon
 
  please see instructions how to view/control embeded videos  
slides icon Slides WE2AA02 [1.803 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-WE2AA02  
About • Received ※ 02 August 2022 — Revised ※ 16 August 2022 — Accepted ※ 31 August 2022 — Issue date ※ 16 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WE2AA04 Data Analysis and Control of an MeV Ultrafast Electron Diffraction System using Machine Learning network, real-time, FEM, experiment 650
 
  • T.B. Bolin, S. Biedron, M.A. Fazio, M. Martínez-Ramón, S.I. Sosa Guitron
    UNM-ECE, Albuquerque, USA
  • M. Babzien, M.G. Fedurin, J.J. Li, M.A. Palmer
    BNL, Upton, New York, USA
  • S. Biedron
    Element Aero, Chicago, USA
  • S. Biedron
    UNM-ME, Albuquerque, New Mexico, USA
 
  MeV ultrafast electron diffraction (MUED) is a pump-probe material characterization technique to study ultrafast lattice dynamics with high temporal and spatial resolution. It is a relatively young technology that has the potential to shed light onto some of the most puzzling problems in physics. This complex instrument can be advanced into a turn-key high-throughput tool with the aid of machine learning (ML) mechanisms together with high-performance computing. The MUED instrument located in the Accelerator Test Facility of Brookhaven National Laboratory was employed in this work to test different ML approaches for both data analysis and control. We characterized three materials using MUED: graphite, black phosphorous and gold thin films. Diffraction patterns were acquired in single shot mode and different ML methodologies were applied to reduce image noise. Convolutional neural network autoenconder and variational autoenconder models were utilized to extract the noise features and increase the signal-to-noise ratio. The energy jitter of the electron beam was analyzed after noise reduction of the single shot diffraction patterns.  
video icon
 
  please see instructions how to view/control embeded videos  
slides icon Slides WE2AA04 [12.865 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-WE2AA04  
About • Received ※ 30 August 2022 — Revised ※ 02 September 2022 — Accepted ※ 15 September 2022 — Issue date ※ 20 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TH1AA03 Accelerator development for Global Security radiation, laser, FEL, free-electron-laser 657
 
  • S. Biedron
    Element Aero, Chicago, USA
 
  Many facilities and projects in global security have to do with global security concerns. From direct interrogation to radiation testing, there are myriad of security applications of particle accelerators. . This paper will review accelerator design and technology development including novel sources being developed.  
slides icon Slides TH1AA03 [24.972 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-TH1AA03  
About • Received ※ 31 August 2022 — Revised ※ 06 September 2022 — Accepted ※ 16 September 2022 — Issue date ※ 23 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TH1AA04 Spatiotemporal Structure in Intense THz Pulsed Beams radiation, polarization, flattop, vacuum 663
 
  • G.A. Hine
    ORNL, Oak Ridge, Tennessee, USA
 
  Optically generated terahertz radiation, with gigavolt per meter (GV/m) electric fields accessible in tabletop experiments, provides a promising source of accelerating gradients for future particle accelerator applications. Manipulation and characterization of radiation is essential for efficiently producing high fields and effectively delivering them to an accelerating structure or interaction region. The talk will cover a method of generating and characterizing high quality and structured terahertz pulsed laser beams for compact particle acceleration.  
video icon
 
  please see instructions how to view/control embeded videos  
slides icon Slides TH1AA04 [1.126 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-TH1AA04  
About • Received ※ 23 August 2022 — Revised ※ 07 September 2022 — Accepted ※ 26 September 2022 — Issue date ※ 12 October 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOJO01 The ARES Linac at DESY experiment, linac, acceleration, diagnostics 691
 
  • F. Burkart, R.W. Aßmann, H. Dinter, S. Jaster-Merz, W. Kuropka, F. Mayet, T. Vinatier
    DESY, Hamburg, Germany
 
  The generation and acceleration of ultra-short, high quality electron beams has attracted more and more interest in accelerator science. Electron bunches with these properties are necessary to operate and test novel diagnostics and advanced high gradient accelerating schemes. Furthermore, several medical and industrial applications require high-brightness electron beams. The dedicated R&D linac ARES at DESY (Deutsches Elektronen-Synchrotron) is now fully operational and able to produce these electron beams at the nominal energy of 155 MeV and deliver it to users. This paper gives an overview of the ARES linac and summarizes the beam parameter measurements. The possibilities for user operation will be described in detail.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-THPOJO01  
About • Received ※ 23 August 2022 — Revised ※ 31 August 2022 — Accepted ※ 01 September 2022 — Issue date ※ 06 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOJO02 Commissioning of a Movable Bunch Compressor for Sub-fs Electron Bunches dipole, linac, MMI, diagnostics 695
 
  • W. Kuropka, R.W. Aßmann, F. Burkart, H. Dinter, S. Jaster-Merz, F. Lemery, F. Mayet, B. Stacey, T. Vinatier
    DESY, Hamburg, Germany
  • R.W. Aßmann
    LNF-INFN, Frascati, Italy
  • S. Jaster-Merz
    University of Hamburg, Institut für Experimentalphysik, Hamburg, Germany
 
  Funding: DESY is a research center within the Helmholtz association HGF.
We present the first commissioning results of the movable bunch compressor (BC) designed for the ARES linac at DESY. The development and simulated performance has been reported earlier and predicts sub-fs electron bunches with high charge densities. Commissioning results of the injector part of the ARES linac delivered promising beam quality results to achieve these numbers. The bunch compressor system is foreseen to be used to bench mark numerical models for coherent synchrotron radiation (CSR) and space charge (SC) for ultra-short electron bunches. Here we will present first measurements of the dispersion as well as calculations for the longitudinal dispersion. In the future the PolariX transverse deflecting structure (TDS) will be commissioned to fully characterize the ARES electron beam.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-THPOJO02  
About • Received ※ 25 August 2022 — Revised ※ 23 August 2022 — Accepted ※ 31 August 2022 — Issue date ※ 15 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOJO03 RF Performance of a Next-Generation L-Band RF Gun at PITZ gun, vacuum, cavity, FEL 699
 
  • M. Krasilnikov, Z. Aboulbanine, G.D. Adhikari, N. Aftab, P. Boonpornprasert, M.E. Castro Carballo, G.Z. Georgiev, J. Good, M. Groß, A. Hoffmann, C. Koschitzki, X.-K. Li, A. Lueangaramwong, D. Melkumyan, R. Niemczyk, A. Oppelt, B. Petrosyan, S. Philipp, M. Pohl, H.J. Qian, C.J. Richard, J. Schultze, F. Stephan, G. Vashchenko, T. Weilbach
    DESY Zeuthen, Zeuthen, Germany
  • M. Bousonville, F. Brinker, M. Hoffmann, K. Knebel, D. Kostin, S. Lederer, L. Lilje, S. Pfeiffer, R. Ritter, S. Schreiber, H. Weise, J. Ziegler
    DESY, Hamburg, Germany
  • G. Shu
    IHEP, Beijing, People’s Republic of China
  • M. Wenskat
    University of Hamburg, Institut für Experimentalphysik, Hamburg, Germany
 
  A new generation of normal conducting 1.3GHz RF gun was developed to provide a high-quality electron source for superconducting linac driven free-electron lasers like FLASH and European XFEL. Compared to the Gun4 series, Gun5 aims for a 50% increase of the duration of the RF pulse (up to 1 ms at 10 Hz repetition rate) combined with high gradients (up to ~60 MV/m at the cathode). In addition to the improved impedance, the new cavity is equipped with an RF probe to measure and control the amplitude and phase of the RF field inside the gun. The first prototype of the new RF gun was manufactured at DESY and installed at the Photo Injector Test facility at DESY in Zeuthen (PITZ) in October 2021. In mid-October 2021 the RF conditioning began, aiming for achieving the aforementioned RF parameters. The conditioning procedure involves a slow gradual increase in repetition rate, RF pulse duration and peak power while carefully monitoring vacuum conditions and signals from interlock sensors. The results of RF conditioning will be reported.  
poster icon Poster THPOJO03 [2.241 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-THPOJO03  
About • Received ※ 26 August 2022 — Revised ※ 31 August 2022 — Accepted ※ 03 September 2022 — Issue date ※ 15 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOJO08 RF Design of Traveling-Wave Accelerating Structures for the FCC-ee Pre-injector Complex linac, positron, klystron, impedance 707
 
  • H.W. Pommerenke, A. Grudiev, A. Latina
    CERN, Meyrin, Switzerland
  • S. Bettoni, P. Craievich, J.-Y. Raguin, M. Schaer
    PSI, Villigen PSI, Switzerland
 
  Funding: This project received funding from the EU’s Horizon 2020 research program (grant No 951754), and was done under the auspices of CHART (Swiss Accelerator Research and Technology Collaboration).
The linacs of the FCCee (Future Circular Electron-Positron Collider) injector complex will both provide the drive beam for positron production and accelerate nominal electron and positron beams up to 6 GeV. Several linacs comprise different traveling-wave (TW) accelerating structures fulfilling the beam dynamics and rf constraints. Notably, high-phase advance large-aperture structures accelerate the positron beam at low energies. All TW structures are rotationally symmetric for easier production. Long-range wakes are damped by HOM detuning. Operating mode and HOM parameters were calculated based on lookup tables and analytic formulas, allowing for rapidly scanning large parameter spaces. In this paper, we present both methodology and realization of the rf design of the TW structures including their pulse compressors.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-THPOJO08  
About • Received ※ 24 August 2022 — Accepted ※ 08 September 2022 — Issue date ※ 15 September 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOJO14 Distributed Coupling Linac for Efficient Acceleration of High Charge Electron Bunches cavity, coupling, linac, distributed 724
 
  • A. Dhar, M. Bai, Z. Li, E.A. Nanni, M.A.K. Othman, S.G. Tantawi, G.R. White
    SLAC, Menlo Park, California, USA
 
  Funding: This work was supported by the Department of Energy Contract No. DE-AC02-76SF00515.
The Electron Ion Collider requires a pre-injector linac to accelerate large electron bunches from 4 MeV up to 400 MeV over 35 m*. Currently this linac is being designed with 3 m long traveling wave structures, which provide a gradient of 16 MV/m. We propose the use of a 1 m distributed coupling design as a potential alternative and future upgrade path to this design. Distributed coupling allows power to be fed into each cavity directly via a waveguide manifold, avoiding on-axis coupling**. A distributed coupling structure at S-band was designed to optimize for shunt impedance and large aperture size. This design provides greater efficiency, thereby lowering the number of klystrons required to power the full linac. In addition, particle tracking analysis shows that this linac maintains lower emittance as bunch charge increases to 14 nC and wakefields become more prevalent. We present the design of this distributed coupling structure, as well as progress on structure manufacturing and characterization.
* F. Willeke, "Electron ion collider conceptual design report 2021," tech. rep., United States, 2021.
** S. Tantawi et al., Phys. Rev. Accel. Beams, vol. 23, p. 092001, Sep 2020.
 
poster icon Poster THPOJO14 [5.280 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-THPOJO14  
About • Received ※ 24 August 2022 — Revised ※ 31 August 2022 — Accepted ※ 01 September 2022 — Issue date ※ 15 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOJO16 High Efficiency Traveling Wave Linac With Tunable Energy linac, gun, cavity, GUI 727
 
  • V.A. Dolgashev, A.K. Krasnykh, A. Romero
    SLAC, Menlo Park, California, USA
  • P. Borchard
    Dymenso LLC, San Francisco, USA
  • R.A. Kostin, S.V. Kuzikov
    Euclid TechLabs, Solon, Ohio, USA
 
  Funding: US DOE Research Opportunities in Accelerator Stewardship DE-FOA-0002463
We will present a physics design of a compact, highly efficient, energy-tunable linac to generate up to 500 W of 10 MeV electron beam power for medical and security applications. This linac will employ a patented travelling wave accelerating structure with outside power flow which combines the advantages of high efficiency with energy tunability of traveling wave cavities. Unlike standing wave structures, the proposed structure has little power reflected back to the RF source, eliminating the need for a heavy, lossy waveguide isolator. In contrast to the side-coupled cavity designs, the proposed structure is symmetrical and therefore it does not have deflecting axial fields that impair the beam transport. The high shunt impedance will allow the linac to achieve an output energy of up to 10 MeV when powered by a compact commercial 9.3 GHz 1.7 MW magnetron. For pulse-to-pulse tuning of the beam output energy we will change of the beam-loaded gradient by varying the triode gun current.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-THPOJO16  
About • Received ※ 30 August 2022 — Revised ※ 01 September 2022 — Accepted ※ 07 September 2022 — Issue date ※ 16 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOJO22 A Ground Experimental Approach Toward Understanding Mysterious Astrophysical Fast Radio Bursts plasma, experiment, FEL, status 735
 
  • Y. Sumitomo, T. Asai, D. Kobayashi, S. Kumagai, K. Kusaka, Y. Onishi, T. Seki, R. Yanagi
    Nihon University, Tokyo, Japan
  • Y. Hayakawa, T. Sakai
    LEBRA, Funabashi, Japan
  • S. Kisaka
    HU ADSE, Hiroshima, Japan
  • H. Koguchi
    AIST, Tsukuba, Japan
 
  Funding: Nihon University CST Project Research Grant (2021 Apr. ~), Japan Society for the Promotion of Science (JSPS), Grant-in-Aid for Scientific Research (KAKENHI), Grant Number JP19K12631
The Fast Radio Bursts are astrophysical events that get much more attentions increasing year by year, due to their mysterious properties of signals. The major properties of signals include a class of the brightest astrophysical events, short durations of emissions, and larger dispersion measures than the known short duration events. Interestingly, the large values of dispersion measures suggest the existence of abundant plasma around the parent bodies of emissions. To have a better understanding of basic mechanism of the Fast Radio Burst emissions, we initiated a ground-based research project at our 100 MeV electron LINAC facility, in combination with the high-beta plasma generation knowledge matured also at Nihon University, that mimics plasma fields in space. In this presentation, we overview our project and report on the status of the experiment for the induced enhanced emissions from integrated iterative interactions with plasma fields.
 
slides icon Slides THPOJO22 [0.678 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-THPOJO22  
About • Received ※ 12 August 2022 — Revised ※ 21 August 2022 — Accepted ※ 31 August 2022 — Issue date ※ 23 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPA04 Unfolding of Bremsstrahlung Photons Energy Spectra Emitted from Electron Cyclotron Resonance Ion Source ECR, photon, plasma, detector 750
 
  • M.J. Kumwenda
    University of Dar es Salaam, Dar es Salaam, Tanzania
  • J.-K. Ahn
    Korea University, Seoul, Republic of Korea
 
  The aim of present study is to determine end-point energies of the bremsstrahlung photons energy spectra emitted from 28-GHz ECRIS by using inverse-matrix unfold method. Azimuthal angular distribution of the bremsstrahlung photons from 28-GHz ECRIS were measured at Busan Center of KBSI. Gamma-ray detection system consists of three round type NaI(Tl) scintillation detectors positioned 62 cm radially from the beam axis and another detector placed at the extraction port for monitoring photon intensity along the beam axis. Bremsstrahlung photons energy spectra were measured at six azimuthal angles at RF power of 1 kW. Monte Carlo simulation based on Geant4 package was performed to take the geometrical acceptance and energy-dependent detection efficiency into account due to large non-uniformity in the material budget. We extracted true bremsstrahlung energy spectra using the inverse-matrix unfolding method. The end-point energies of the bremsstrahlung photons after application of deconvolution method were found to be 1.320±0.050 MeV, 1.530±0.070 MeV, 1.540±0.070 MeV, 1.690±0.030 MeV, 1.530±0.070 MeV and 1.690±0.030 MeV for 0°, 30°, 60°, 90°, 120° and 330°, respectively.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-THPOPA04  
About • Received ※ 23 August 2022 — Revised ※ 31 August 2022 — Accepted ※ 09 September 2022 — Issue date ※ 23 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPA05 Status of the CLEAR User Facility at CERN and its Experiments experiment, radiation, plasma, focusing 753
 
  • R. Corsini, W. Farabolini, A. Malyzhenkov, V. Rieker
    CERN, Meyrin, Switzerland
  • P. Korysko
    Oxford University, Physics Department, Oxford, Oxon, United Kingdom
  • K.N. Sjobak
    University of Oslo, Oslo, Norway
 
  The CERN Linear Accelerator for Research (CLEAR) at CERN is a versatile user facility providing a 200 MeV electron beam for accelerator R&D, irradiation studies for space, and medical applications. After successful operation in 2017-2020, CLEAR running was extended in 2021 for another 5-year period. In the paper we give a status of the facility, outlining recent progress in beam performance and hardware improvements. We report on beam operation over the last years and review the main results of experimental activities. Finally, we discuss the planned upgrades together with the proposed future experimental program.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-THPOPA05  
About • Received ※ 24 August 2022 — Revised ※ 28 August 2022 — Accepted ※ 01 September 2022 — Issue date ※ 01 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPA06 Methods for VHEE/FLASH Radiotherapy Studies and High Dose Rate Dosimetry at the CLEAR User Facility radiation, experiment, focusing, site 758
 
  • P. Korysko
    Oxford University, Physics Department, Oxford, Oxon, United Kingdom
  • J.J. Bateman, C.S. Robertson
    JAI, Oxford, United Kingdom
  • R. Corsini, L.A. Dyks, W. Farabolini, V. Rieker
    CERN, Meyrin, Switzerland
 
  The interest for Very High Energy Electron (VHEE) radiotherapy (RT) for cancer treatment recently bloomed, given the present availability of high-gradient accelerator technology for compact, cost effective electron linacs in the 100-200 MeV energy range. Particularly promising is the so called FLASH high dose rate regime, in which cancer cells are damaged while healthy tissue is largely spared. VHEE beams are especially adapted for FLASH RT, given their penetration depth and the high beam current, needed to treat large deep seated tumors. In the CERN Linear Accelerator for Research (CLEAR) facility, a series of unique studies have been initiated on VHEE and FLASH RT issues, in collaboration with several multidisciplinary user groups. In this paper we briefly outline the activities and its main recent results, e.g. on localized dose deposition by beam focusing, and on chemical and biological test to clarify damage mechanisms. We then describe in details the dedicated systems and the techniques adopted - and in large part locally developed by the CLEAR team - in order to satisfy the user requirements, with particular attention to the crucial aspect of high dose rate dosimetry.  
slides icon Slides THPOPA06 [1.183 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-THPOPA06  
About • Received ※ 17 August 2022 — Revised ※ 22 August 2022 — Accepted ※ 31 August 2022 — Issue date ※ 16 October 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOGE03 Design & Multiphysics Analysis of Three-cell, 1.3 GHz Superconducting RF Cavity for Electron Beam Accelerator to Treat Wastewater cavity, accelerating-gradient, multipactoring, HOM 809
 
  • P. Kumar, A. Pathak, R. Varma
    IIT Mumbai, Mumbai, India
 
  To treat industrial effluents including contaminants of emerging concern (CECs), Irradiation treatment by electron beam accelerator has shown promising results. Our aim is to design and develop a superconducting linear electron accelerator. A 1.3 GHz, three cell conduction cooled, TM class superconducting cavity has been proposed to accelerate a 100 mA electron beam from 100 keV to 4.5 MeV. The main aim of the design is to optimize the cavity for low heat loss and high accelerating gradient. The optimized ratio of peak surface electric and magnetic field to accelerating field for cavity are Epk/Eacc= 2.72 and Hpk/Eacc= 4.11 mT/(MV/m). The optimized Geometry factor (G) and R/Q values for this cavity are 246.7 and 306.4 ohms respectively. Here we also addressed other multiphysics issues such as Lorentz force detuning (LFD), Higher order modes (HOMs) and Multipacting. The multiphysics analysis helps to estimate the degree of these challenges. The final Lorentz detuning factor of the cavity has been reduced to 0.12 Hz/(MV/m)2, HOMs of 2.18 and 2.9 GHz modes are dominating except the main mode and Multipacting phenomena is not found at 15 MV/m of accelerating gradient.  
poster icon Poster THPOGE03 [1.121 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-THPOGE03  
About • Received ※ 22 August 2022 — Revised ※ 25 August 2022 — Accepted ※ 01 September 2022 — Issue date ※ 14 October 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOGE18 Design of a 1.3 GHz RF-Dipole Crabbing Cavity for International Linear Collider cavity, HOM, dipole, collider 832
 
  • S.U. De Silva, J.R. Delayen
    ODU, Norfolk, Virginia, USA
  • R.A. Rimmer
    JLab, Newport News, Virginia, USA
 
  The International Liner Collider (ILC) requires crabbing systems to increase the luminosity of the colliding electron and positron bunches. There are several frequency options for the crabbing cavity. We have designed a 1.3 GHz compact 1-cell and 2-cell rf-dipole crabbing cavity to compensate for luminosity degradation due to large crossing angle. This paper presents the 1-cell and 2-cell cavities designed to meet the current specifications including the fundamental power coupler and higher order mode couplers.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-THPOGE18  
About • Received ※ 11 August 2022 — Revised ※ 26 August 2022 — Accepted ※ 01 September 2022 — Issue date ※ 16 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPORI09 Design and Optimization of a 1.3 GHz Gridded Thermionic Electron Gun for High-Intensity Compact Superconducting Electron Accelerator (HICSEA) cathode, emittance, gun, focusing 851
 
  • A.B. Kavar, A. Pathak, R. Varma
    IIT Mumbai, Mumbai, India
 
  The design and optimization of the proposed 1.3 GHz gridded thermionic electron gun aims to drive a conduction cooled superconducting electron accelerator that will be used to treat contaminants of emerging concern in water bodies. The gun geometry is Pierce-type and optimized for beam current of 1A with LaB6 as cathode material at cathode potential of -100 kV. The final optimized cathode radius and angle of inclination of the focusing electrode are found to be 1.5 mm, and 77 degree respectively. For an emittance compensation electrode, the optimized values for thickness and potential are 2 mm and -50 kV respectively, and separation between cathode and compensator is 8 mm. Beam dynamics calculations have been performed with self-developed particle tracking code that assumes space charge interactions and imported fields. The beam dynamics simulations show that with an initial bunch length of 50 ps having a bunch charge of 5 pC, the bunch length of the bunch reduces to 33 ps. The diameter, transverse and longitudinal emittance obtained are 2.8 mm, 1 mm-mrad and 5 mm-mrad respectively.  
poster icon Poster THPORI09 [1.238 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-THPORI09  
About • Received ※ 11 August 2022 — Revised ※ 14 August 2022 — Accepted ※ 01 September 2022 — Issue date ※ 16 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)