Cryogenic Accelerator Design for Compact Very High Energy Electron Therapy

LINAC'22

Sami Tantawi, Emma Snively, Zenghai Li, Chris Nantista, Muhammad Shumail, Marco Oriunno, Valery Borzenets, Anatoly Krasnykh, Gordon Bowden, SLAC National Accelerator Laboratory Bill Loo, Dept. of Radiation Oncology, Stanford School of Medicine

August 29th, 2022

Getting to FLASH VHEE capability

Respiratory gating Beam On

FLASH Therapy

Motion Management

Bourhis, Jean, et al. "Treatment of a first patient with FLASH-radiotherapy." *Radiotherapy and oncology* 139 (2019).

- Sub-second treatment time appears to improve healthy tissue sparing with comparable tumor control
- Demonstrated in preclinical setting with photons, electrons, and protons

High Dose Rate Radiotherapy

• Requires high dose rate >40 Gy/L/s

Advances in High Gradient Accelerator Design

Program Objective: Deliver 100 MeV electron beam from 1 m accelerator at dose rate of ≥40 Gy/s using an accelerator design and power supply that is compatible with existing clinical infrastructure

135° Phase Advance Linac

Distributed Coupling Approach

- 135° phase advance of this standing wave X-band linac provides the highest possible geometric shunt impedance, 192 M Ω /m at room temperature.
- Cavity geometry with re-entrant nose cone maximizes the ratio of on-axis accelerating gradient to surface field using a geometric optimization approach.

• Coupling iris and waveguide features optimized using SLAC's parallel ACE3P solvers for the correct transfer S-matrix and coupling for a beam-loaded cavity.

Table 1 Parameters of 135-degree phase advance cell			
f(GHz)	11.424		
Cell-cell iris radius (mm)	1.0		
Disk thickness (mm)	1.0		
Cell length (mm)	9.841 77 22146 526 2.0		
Operating temperature (K)			
Q0			
Shunt impedance R (M Ω /m)			
Es/Ea			
Hs/Ea (kA/m/(MV/m))	2.06		
Coupling beta	1.8		

Compact RF pulse compression

Powering the FLASH-VHEE linac

- Same principle as original SLED, now with two polarized modes in a single high-Q cavity
- HE_{11} -mode in the corrugated cylindrical cavity (right) achieves a Q_0 of 405,000 with a cavity length of 0.87 m.

K200 Solid State Modulator System from ScandiNova

- 11.424 GHz •
- Peak power 6 MW •
- Pulse length 4 μ s ٠

	Unit	Klystron	
RF Peak Power	MW	6	
RF Average Power	KW	10	
Modulator Peak power	MW	20.1	
Modulator Average power	kW	49.5	
Operational Voltage range	kV	193	
Operational Current range (incl 10% mar	A	115	
PRF range (min/max)	Hz	1	400
Pulse length (top)	μs	0.1	4.0
Top flatness (dV)	< +/- %	1.00	
Rate of rise (min/max)	kV/µs	100	150
Amplitude stability	< +/- %	0.01	
Trig delay	μs	~1.2	
Pulse to Pulse time jitter	ns	<±5	
Pulse width time jitter	ns	<±8	

20

25

30

35 40 45 50

- Coupler designed with an intermediary low-Q TE₁₁ cavity (above)
 - small aperture to the compressor minimizes the perturbation to the HE_{11} mode
 - four irises into the low-Q cavity enhance the coupling factor
- Compressed pulse reaches 19 MW peak • power in a 200 ns flattop

Mechanical Design

Diffusion bonding

- Linac and power distribution manifolds milled from four 1meter copper slabs
- Stress distribution analysis (below) in one half of the VHEE linac during diffusion bonding
 - variation in normal stress at the interface running through the center of the cavities covers a range up to 8 MPa
 - within the expected tolerance for diffusion bonding

- Schematic of VHEE linac mounted inside cryostat
- Single stage cold head will provide up to 250 W of cooling power at 80 K