Keyword: MMI
Paper Title Other Keywords Page
MO1PA01 Beam Commissioning and Integrated Test of the PIP-II Injector Test Facility cavity, cryomodule, operation, MEBT 13
 
  • E. Pozdeyev, R. Andrews, C.M. Baffes, M. Ball, C. Boffo, R. Campos, J.-P. Carneiro, B.E. Chase, A.Z. Chen, D.J. Crawford, J. Czajkowski, N. Eddy, M. El Baz, M.G. Geelhoed, V.M. Grzelak, P.M. Hanlet, B.M. Hanna, B.J. Hansen, E.R. Harms, B.F. Harrison, M.A. Ibrahim, K.R. Kendziora, M.J. Kucera, D.D. Lambert, J.R. Leibfritz, P. Lyalyutskyy, J.N. Makara, H. Maniar, L. Merminga, R. Neswold, D.J. Nicklaus, J.P. Ozelis, D. Passarelli, N. Patel, D.W. Peterson, L.R. Prost, G.W. Saewert, A. Saini, V.E. Scarpine, A.V. Shemyakin, J. Steimel, A.I. Sukhanov, P. Varghese, R. Wang, A. Warner, G. Wu, R.M. Zifko
    Fermilab, Batavia, Illinois, USA
  • V.K. Mishra, M.M. Pande, K. Singh, Vikas. Teotia
    BARC, Mumbai, India
 
  The PIP-II Injector Test (PIP2IT) facility is a near-complete low energy portion of the Superconducting PIP-II linac driver. PIP2IT comprises the warm front end and the first two PIP-II superconducting cryomodules. PIP2IT is designed to accelerate a 2 mA H beam to an energy of 20 MeV. The facility serves as a testbed for a number of advanced technologies required to operate PIP-II and provides an opportunity to gain experience with commissioning of the superconducting linac, significantly reducing project technical risks. Some PIP2IT components are contributions from international partners, who also lend their expertise to the accelerator project. The project has been successfully commissioned with the beam in 2021, demonstrating the performance required for the LBNF/DUNE. In this paper, we describe the facility and its critical systems. We discuss our experience with the integrated testing and beam commissioning of PIP2IT, and present commissioning results. This important milestone ushers in a new era at Fermilab of proton beam delivery using superconducting radio-frequency accelerators.  
video icon
 
  please see instructions how to view/control embeded videos  
slides icon Slides MO1PA01 [2.714 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-MO1PA01  
About • Received ※ 16 August 2022 — Revised ※ 26 August 2022 — Accepted ※ 28 August 2022 — Issue date ※ 13 October 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MO1PA02 Beam Commissioning of Normal Conducting Part and Status of ESS Project linac, DTL, rfq, LEBT 18
 
  • R. Miyamoto, C. Amstutz, S. Armanet, R.A. Baron, E.C. Bergman, A.K. Bhattacharyya, B.E. Bolling, W. Borg, S. Calic, M. Carroll, J. Cereijo García, J. Christensson, J.D. Christie, H. Danared, C.S. Derrez, E.M. Donegani, S. Ekström, M. Eriksson, M. Eshraqi, J.F. Esteban Müller, K. Falkland, A. Forsat, S. Gabourin, A. Garcia Sosa, A.A. Gorzawski, V. Grishin, P.O. Gustavsson, S. Haghtalab, V.A. Harahap, H. Hassanzadegan, W. Hees, J.J. Jamróz, A. Jansson, M. Jensen, B. Jones, M. Juni Ferreira, M. Kalafatic, I. Kittelmann, H. Kocevar, S. Kövecses de Carvalho, E. Laface, B. Lagoguez, Y. Levinsen, M. Lindroos, A. Lundmark, M. Mansouri, C. Marrelli, C.A. Martins, J.P.S. Martins, S. Micic, N. Milas, M. Mohammednezhad, R. Montaño, M. Muñoz, G. Mörk, D.J.P. Nicosia, B. Nilsson, D. Noll, A. Nordt, T. Olsson, L. Page, D. Paulic, S. Pavinato, A. Petrushenko, D.C. Plostinar, J. Riegert, A. Rizzo, K.E. Rosengren, K. Rosquist, M. Serluca, T.J. Shea, A. Simelio, S. Slettebak, H. Spoelstra, A.M. Svensson, L. Svensson, R. Tarkeshian, L. Tchelidze, C.A. Thomas, E. Trachanas, K. Vestin, R.H. Zeng, P.L. van Velze, N. Öst
    ESS, Lund, Sweden
  • C. Baltador, L. Bellan, M. Comunian, F. Grespan, A. Pisent
    INFN/LNL, Legnaro (PD), Italy
  • I. Bustinduy, A. Conde, D. Fernández-Cañoto, N. Garmendia, P.J. González, G. Harper, A. Kaftoosian, J. Martin, I. Mazkiaran, J.L. Muñoz, A.R. Páramo, S. Varnasseri, A.Z. Zugazaga
    ESS Bilbao, Zamudio, Spain
  • A.C. Chauveau, P. Hamel, O. Piquet
    CEA-IRFU, Gif-sur-Yvette, France
 
  The European Spallation Source, currently under construction in Lund Sweden, will be a spallation neutron source driven by a superconducting proton linac with a design power of 5 MW. The linac features a high peak current of 62.5 mA and long pulse length of 2.86 ms with a repetition rate of 14 Hz. The normal conducting part of the linac has been undergoing beam commissioning in multiple steps, and the main focus of the beam commissioning has been on bringing systems into operation, including auxiliary ones. In 2022, beam was transported to the end of the first tank of the five-tank drift tube linac. This paper provides a summary of the beam commissioning activities at ESS and the current status of the linac.  
video icon
 
  please see instructions how to view/control embeded videos  
slides icon Slides MO1PA02 [18.907 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-MO1PA02  
About • Received ※ 20 August 2022 — Revised ※ 27 August 2022 — Accepted ※ 01 September 2022 — Issue date ※ 21 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOPA19 Preparation for Commissioning with Beam of "Advanced Demonstrator" Module with Heavy Ion Beam cavity, linac, heavy-ion, solenoid 114
 
  • M. Miski-Oglu, W.A. Barth, M. Basten, C. Burandt, F.D. Dziuba, T. Kürzeder, S. Lauber, J. List, S. Yaramyshev
    HIM, Mainz, Germany
  • W.A. Barth, M. Basten, C. Burandt, F.D. Dziuba, V. Gettmann, T. Kürzeder, S. Lauber, J. List, S. Yaramyshev
    GSI, Darmstadt, Germany
  • W.A. Barth, F.D. Dziuba, S. Lauber, J. List
    KPH, Mainz, Germany
  • H. Podlech, M. Schwarz
    IAP, Frankfurt am Main, Germany
 
  The integration of the accelerator components in to the cryogenic module prototype (Advanced Demonstrator) is a major milestone of the R&D for the superconducting heavy ion continuous wave linear accelerator HELIAC at GSI. The HELIAC is joint project of Helmholtz Institute Mainz (HIM) and GSI developed in collaboration with IAP Goethe University Frankfurt. This module is equipped with three superconducting (sc) Cross bar H-mode (CH) acceleration cavities CH0-CH2 and a sc rebuncher cavity, as well as two sc solenoids. The commissioning of the cryogenic module with Argon beam at GSI is scheduled for August 2023. In preparation for the beam test activities, the beamline, which connects the High Charge State Injector (HLI) with the testing area, has been installed. The beamline comprises a pair of phase probes for Time Of Flight (TOF) measurement of the incoming beam energy, quadrupole lenses and a 4-gap RF-buncher cavity. The beam diagnostics bench behind the cryo module is equipped with phase probe pairs, a slit-grid device, a bunch shape monitor (Feshenko monitor) for measurements of the longitudinal beam profile. The bench allows complete 6d characterization of the ion beam.  
poster icon Poster MOPOPA19 [3.074 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-MOPOPA19  
About • Received ※ 24 August 2022 — Revised ※ 29 August 2022 — Accepted ※ 01 September 2022 — Issue date ※ 04 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOGE02 Status of the TOP-IMPLART Proton Linac linac, proton, radiation, experiment 138
 
  • P. Nenzi, A. Ampollini, G. Bazzano, F. Fortini, L. Picardi, C. Ronsivalle, V. Surrenti, E. Trinca
    ENEA C.R. Frascati, Frascati (Roma), Italy
  • M.D. Astorino
    ENEA, Agenzia nazionale per le nuove tecnologie, l’energia e lo sviluppo economico sostenibile, Frascati, Italy
 
  The TOP-IMPLART (Intensity Modulated Proton Linear Accelerator for Radio Therapy) proton linac, is a RF pulsed linac, designed for protontherapy consisting of a low frequency (425 MHz) 7 MeV injector followed by a sequence of accelerating modules operating at 3 GHz under construction, assembly and test at the ENEA Frascati Research Center. The accelerator features also a vertical low energy (3-7 MeV) line for irradiation of samples in horizontal position. The segment currently completed includes 8 SCDTL modules up to 71 MeV grouped in two sections each one powered by a 10 MW klystron driven by a SCANDINOVA K100 modulator with a variable pulse length (1-5 us) at a repetition frequency of 25 Hz. The output current can be varied up to 30 uA. The beam is mainly used for radiobiology experiments and dosimetry systems tests, but the flexibility in beam characteristics makes it suitable also for applications different from protontherapy, as the irradiation of electronics components to verify their behavior in the space environment. In this work, the current status of the accelerator and beam characteristics measurements are presented with an overview of the experiments carried on it.  
poster icon Poster MOPOGE02 [7.021 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-MOPOGE02  
About • Received ※ 13 August 2022 — Revised ※ 27 August 2022 — Accepted ※ 02 September 2022 — Issue date ※ 12 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOGE25 Rf Measurement and Characterisation of European Spallation Source Cavities at UKRI-STFC Daresbury Laboratory and DESY cavity, radiation, detector, cryomodule 212
 
  • P.A. Smith, A.E.T. Akintola, K.D. Dumbell, M.J. Ellis, S. Hitchen, P.C. Hornickel, C.R. Jenkins, A.J. May, P.A. McIntosh, K.J. Middleman, A.J. Moss, S.M. Pattalwar, M.D. Pendleton, J.O.W. Poynton, A.E. Wheelhouse, S. Wilde
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • G. Jones, M. Lowe, D.A. Mason, G. Miller, J. Mutch, A. Oates, J.T.G. Wilson
    STFC/DL, Daresbury, Warrington, Cheshire, United Kingdom
  • K.J. Middleman
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • D. Reschke, L. Steder, M. Wiencek
    DESY, Hamburg, Germany
 
  The Accelerator Science and Technology Centre (ASTeC) is responsible for delivering 88 High Beta (HB) cavities as part of the European Spallation Source (ESS) facility in Sweden. The bulk Niobium Superconducting Radio Frequency (SRF) cavities operate at 704 MHz. They have been fabricated in industry and are currently being tested at Daresbury Laboratory and Deutsches Elektronen-Synchrotron (DESY). They will then be delivered to Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA) Saclay, France for integration into cryomodules. To date 50 cavities have been conditioned and evaluated and 36 cavities have been delivered to CEA. This paper discusses the experiences and testing of the cavities performed to date at both sites  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-MOPOGE25  
About • Received ※ 24 August 2022 — Revised ※ 29 August 2022 — Accepted ※ 01 September 2022 — Issue date ※ 04 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPORI12 Development of Commercial RFQ Toward CW Applications cavity, rfq, operation, neutron 255
 
  • H. Yamauchi, M. Masuoka
    Time Corporation, Hiroshima, Japan
 
  TIME Co. developed a new 4-vane RFQ structure that can be used for a very high-duty factor operation. We eliminated the tuners to flatten the field distribution. The tuners increase RF contacts which may trigger unex-pected local heat spots and subsequent discharges. In addition, we hollowed out the entire vane to achieve large cooling water channels. A high-power test showed that the commissioning was completed within one day. We could input a nominal RF power without experienc-ing almost any discharge. The applied duty factor was 5 % at the 200 MHz resonant frequency, and the meas-ured frequency shift was not detected.
These activities have been carried out in collaboration with Tokyo Institute of Technology and RIKEN.
 
slides icon Slides MOPORI12 [1.877 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-MOPORI12  
About • Received ※ 26 August 2022 — Revised ※ 04 September 2022 — Accepted ※ 27 September 2022 — Issue date ※ 29 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPORI17 The ESS Fast Beam Interlock System: First Experience of Operating With Proton Beam interface, controls, proton, hardware 265
 
  • S. Gabourin, M. Carroll, S. Kövecses de Carvalho, A. Nordt, S. Pavinato, K. Rosquist
    ESS, Lund, Sweden
 
  The European Spallation Source (ESS), Sweden, currently in its early operation phase, aims to be the most powerful neutron source in the world. Proton beam pulses are accelerated and sent to a rotating tungsten target, where neutrons are generated via the spallation effect. The damage potential of the ESS proton beam is high and melting of copper or steel can happen within less than 5 microseconds. Therefore, highly reliable and fast machine protection (MP) systems have been designed and deployed. The core system of ESS Machine Protection is the Fast Beam Interlock System (FBIS), based on FPGA technology. FBIS collects data from all relevant accelerator and target systems through 300 direct inputs and decides whether beam operation can start or must stop. The architecture is based on two main building blocks: Decision Logic Node (DLN), executing the protection logic and realizing interfaces to Higher-Level Safety, Timing System and EPICS Control System. The second block, the Signal Condition Unit (SCU), implements the interface between FBIS inputs/outputs and DLNs. This paper gives an overview on FBIS and a summary on its performance during beam commissioning phases since 2021.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-MOPORI17  
About • Received ※ 19 August 2022 — Revised ※ 26 August 2022 — Accepted ※ 02 September 2022 — Issue date ※ 03 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TU2AA02 SPIRAL2 Final Commissioning Results linac, cavity, rfq, operation 314
 
  • A.K. Orduz, P.-E. Bernaudin, M. Di Giacomo, R. Ferdinand, B. Jacquot, O. Kamalou, J.-M. Lagniel, G. Normand, A. Savalle
    GANIL, Caen, France
  • D.U. Uriot
    CEA-DRF-IRFU, France
 
  The commissioning of SPIRAL2 was carried out in different steps and slots from 2014 to end 2021. In a first phase, the proton-deuteron and heavy ion sources, LEBT lines and RFQ were commissioned and validated with A/Q=1 up to 3 particles. The validation of the MEBT (between the RFQ and the linac, including the Single Bunch Selector), linac and HEBT lines (up to the beam dump and to the NFS experimental room) started on July 2019, when GANIL received the authorization to operate SPIRAL2. The linac tuning is now validated with H+, 4He2+ and D+ and nominal H+ and D+ beams were sent to NFS for physics experiments. The main results obtained during the commissioning stages and the strategy used by the commissioning team are presented.  
video icon
 
  please see instructions how to view/control embeded videos  
slides icon Slides TU2AA02 [3.724 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-TU2AA02  
About • Received ※ 24 August 2022 — Revised ※ 29 August 2022 — Accepted ※ 01 September 2022 — Issue date ※ 02 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TU2AA04 Commissioning of IFMIF Prototype Accelerator Towards CW Operation rfq, simulation, operation, linac 319
 
  • K. Masuda, T. Akagi, A. De Franco, T. Ebisawa, K. Hasegawa, K. Hirosawa, J. Hyun, T. Itagaki, A. Kasugai, K. Kondo, K. Kumagai, S. Kwon, A. Mizuno, Y. Shimosaki, M. Sugimoto
    QST Rokkasho, Aomori, Japan
  • T. Akagi, Y. Carin, F. Cismondi, A. De Franco, D. Gex, K. Hirosawa, K. Kumagai, S. Kwon, K. Masuda, I. Moya, F. Scantamburlo, M. Sugimoto
    IFMIF/EVEDA PT, Aomori, Japan
  • L. Antoniazzi, L. Bellan, M. Comunian, A. Facco, E. Fagotti, F. Grespan, A. Palmieri, A. Pisent
    INFN/LNL, Legnaro (PD), Italy
  • F. Arranz, B. Brañas, J. Castellanos, D. Gavela, D. Jimenez-Rey, Á. Marchena, J. Mollá, P. Méndez, O. Nomen, C. Oliver, I. Podadera, D. Regidor, A. Ros, V. Villamayor, M. Weber, C. de la Morena
    CIEMAT, Madrid, Spain
  • N. Bazin, B. Bolzon, N. Chauvin, S. Chel, J. Marroncle
    CEA-IRFU, Gif-sur-Yvette, France
  • P. Cara, Y. Carin, F. Cismondi, G. Duglue, H. Dzitko, D. Gex, A. Jokinen, I. Moya, G. Phillips, F. Scantamburlo
    F4E, Germany
  • A. Mizuno
    JASRI/SPring-8, Hyogo-ken, Japan
  • Y. Shimosaki
    KEK, Ibaraki, Japan
 
  Construction and validation of the Linear IFMIF Prototype Accelerator (LIPAc) have been conducted under the framework of the IFMIF/EVEDA project. The LIPAc consists, in its final configuration, of a 100 keV injector and the world longest 5 MeV RFQ accelerator, followed by a MEBT with high space charged and beam loaded re-buncher cavities, an HWR-SRF linac, HEBT with a Diagnostic Plate, ending in a Beam Dump (BD) designed to stop the world highest deuteron current of 125 mA CW at 9 MeV. The beam commissioning at a low duty cycle of ~0.1 % led to a successful RFQ acceleration of 125 mA and 5 MeV beam in 2019. The following beam commissioning phase was initiated in July 2021 with a temporary transport line replacing the SRF linac. The major goals of this phase are to validate the RFQ, MEBT and BD performances up to CW and to characterize the beam properties in preparation to the final configuration with the SRF linac. This paper will present progresses made in this phase so far, such as a low-current and low-duty beam commissioning completed in Dec. 2021, CW operation campaign of the injector towards the nominal beam current, and RF conditioning of the RFQ towards CW.  
video icon
 
  please see instructions how to view/control embeded videos  
slides icon Slides TU2AA04 [6.731 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-TU2AA04  
About • Received ※ 27 August 2022 — Revised ※ 31 August 2022 — Accepted ※ 02 September 2022 — Issue date ※ 08 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOJO01 Commissioning Plan of the IFMIF-DONES Accelerator linac, neutron, rfq, target 330
 
  • I. Podadera, A. Ibarra, M. Weber
    Consorcio IFMIF-DONES España, Granada, Spain
  • J. Aguilar, S. Becerril-Jarque, M. Luque, J. Maestre, D. Sánchez-Herranz, C. Torregrosa
    UGR, Granada, Spain
  • F. Arranz, M. García, A. Ibarra, D. Jimenez-Rey, J. Mollá, C. Oliver, I. Podadera, D. Regidor, M. Weber, C. de la Morena
    CIEMAT, Madrid, Spain
  • L. Bellan, A. Palmieri, A. Pisent
    INFN/LNL, Legnaro (PD), Italy
  • D. Bernardi, G. Micciché, F.S. Nitti
    ENEA Brasimone, Centro Ricerche Brasimone, Camugnano, BO, Italy
  • B. Bolzon, N. Chauvin, S. Chel, A. Madur
    CEA-IRFU, Gif-sur-Yvette, France
  • P. Cara, G. Duglue
    Fusion for Energy, Garching, Germany
  • J. Castellanos
    Universidad de Castilla-La Mancha, Ciudad Real, Spain
  • T. Dézsi
    CER, Budapest, Hungary
  • M.J. Ferreira
    Lund University, Faculty of Engineering (LTH), Lund, Sweden
  • V. Hauer, Y.F. Qiu
    KIT, Eggenstein-Leopoldshafen, Germany
  • W. Królas, U. Wiacek
    IFJ-PAN, Kraków, Poland
  • T. Lehmann
    Karlsruher Institut für Technologie, Institut für Fördertechnik und Logistiksysteme, Karlsruhe, Germany
  • L. Macià, M. Sanmartí, B.K. Singh
    IREC, Sant Adria del Besos, Spain
  • C.A. Martins
    Lund University, Lund, Sweden
  • C. Prieto
    Empresarios Agrupados, Madrid, Spain
 
  Funding: Funded by the European Union via the Euratom Research and Training Programme (Grant Agreement No 101052200 - EUROfusion)
IFMIF-DONES (International Fusion Materials Irradiation Facility- DEMO-Oriented Neutron Early Source) - a powerful neutron irradiation facility for studies and certification of materials to be used in fusion reactors - is planned as part of the European roadmap to fusion electricity. Its main goal will be to characterize and to qualify materials under irradiation in a neutron field similar to the one faced in a fusion reactor. The intense neutron source is produced by impinging deuterons, from high-power linear deuteron accelerator, on a liquid lithium curtain. The facility has accomplished the preliminary design phase and is currently in its detailed design phase. At the present stage, it is important to have a clear understanding of how the commissioning of the facility will be performed, especially the commissioning of a 5 MW CW deuteron beam, together with the lithium curtain and the beam optimization for the neutron irradiation. In this contribution, the present plans for the hardware and beam commissioning of the accelerator will be given, focusing on the most critical aspects of the tiered approach and on the integration of the procedure with the lithium and tests systems.
 
poster icon Poster TUPOJO01 [2.038 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-TUPOJO01  
About • Received ※ 24 August 2022 — Revised ※ 29 August 2022 — Accepted ※ 31 August 2022 — Issue date ※ 02 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOJO08 Upgrade and Commissioning of the 60 keV Low Energy Beam Transport Line for the Frankfurt Neutron Source FRANZ ion-source, proton, rfq, LEBT 352
 
  • H. Hähnel, A. Ateş, G. Blank, M.S. Breidt, D. Bänsch, R. Gössling, T. Metz, H. Podlech, U. Ratzinger, A. Rüffer, K. Volk, C. Wagner
    IAP, Frankfurt am Main, Germany
  • R.H. Hollinger, C. Zhang
    GSI, Darmstadt, Germany
  • H. Podlech
    HFHF, Frankfurt am Main, Germany
 
  The Low Energy Beam Transport line (LEBT) for the Frankfurt Neutron Source (FRANZ) has been redesigned to accommodate a 60 keV proton beam. Driven by a CHORDIS ion source, operating at 35 kV, a newly designed electrostatic postaccelerator has beeen installed to reach the desired beam energy of 60 keV. Additional upgrades to the beamline include two steerer pairs, several optical diagnostics sections and an additional faraday cup. We present the results of beam commissioning up to the point of RFQ injection. Emittance measurements were performed to prepare matching to the RFQ and improve the beam dynamics model of the low energy beamline. Due to the successful operation of the beamline at 60 keV, retrofitting of the RFQ for the new energy has been initiated.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-TUPOJO08  
About • Received ※ 22 August 2022 — Revised ※ 28 August 2022 — Accepted ※ 01 September 2022 — Issue date ※ 05 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOJO10 Hardware Commissioning With Beam at the European Spallation Source: Ion Source to DTL1 DTL, ion-source, linac, rfq 360
 
  • B. Jones, R.A. Baron, C.S. Derrez, F. Grespan, V. Grishin, Y. Levinsen, N. Milas, R. Miyamoto, D.J.P. Nicosia, D. Noll, D.C. Plostinar, A.G. Sosa, E. Trachanas, R. Zeng
    ESS, Lund, Sweden
  • C. Baltador, L. Bellan, M. Comunian, F. Grespan, A. Palmieri
    INFN/LNL, Legnaro (PD), Italy
  • I. Bustinduy, N. Garmendia
    ESS Bilbao, Zamudio, Spain
  • L. Neri
    INFN/LNS, Catania, Italy
 
  The European Spallation Source (ESS) aims to build and commission a 2 MW proton linac ready for neutron production in 2025. The normal conducting section of the ESS linac is designed to accelerate a 62.5 mA proton beam to 90 MeV at 14 Hz. The section consists of a microwave ion source, Radio Frequency Quadrupole (RFQ) and 5-tank Drift Tube Linac (DTL). All sections are provided to ESS by in-kind partners across Europe. This paper reports the recent progress on the assembly, installation, testing and commissioning of the ESS normal conducting linac.  
slides icon Slides TUPOJO10 [2.397 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-TUPOJO10  
About • Received ※ 12 August 2022 — Revised ※ 15 August 2022 — Accepted ※ 28 August 2022 — Issue date ※ 03 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOJO13 Wire Scanner Systems at the European Spallation Source (ESS): Tests and First Beam Commissioning Results detector, MEBT, linac, controls 372
 
  • C.S. Derrez, I. Bustinduy, E.M. Donegani, V. Grishin, H. Kocevar, J.P.S. Martins, N. Milas, R. Miyamoto, T.J. Shea, R. Tarkeshian, C.A. Thomas, P.L. van Velze
    ESS, Lund, Sweden
  • S. Cleva, R. De Monte, M. Ferianis, S. Grulja
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
  • I. Mazkiaran, A.R. Páramo
    ESS Bilbao, Zamudio, Spain
 
  The ESS beam instrumentation includes 3 different type of Wire Scanners (WS). Double wires systems are deployed in the MEBT part of NCL, and single wires and flying wire instruments are being tested and installed in the higher energy sections of the ESS linac. First beam tests result from the MEBT systems will be presented. The superconducting linac WS systems are based on scintillator detectors and wavelength shifting fibers are mounted on the beam pipe. The detectors are coupled to long haul optical fibers, which carry the signals to custom front end electronics sitting in controls racks at the surface. The acquisition chain have been characterized at IHEP (Protvino, Russia), ELETTRA (Trieste, Italy), CERN PSB, CoSy (IKP, Germany) and SNS (USA) before installation in the ESS tunnel. The test results of this system design, differing from the standard approach where photomultipliers are coupled to the scintillator will be presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-TUPOJO13  
About • Received ※ 24 August 2022 — Revised ※ 29 August 2022 — Accepted ※ 30 August 2022 — Issue date ※ 01 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOJO14 Status of Testing and Commissioning of the Medium Energy Beam Transport Line of the ESS Normal Conducting Linac MEBT, cavity, linac, quadrupole 376
 
  • A.G. Sosa, R.A. Baron, H. Danared, C.S. Derrez, E.M. Donegani, M. Eshraqi, V. Grishin, A. Jansson, M. Jensen, B. Jones, E. Laface, B. Lagoguez, Y. Levinsen, J.P.S. Martins, N. Milas, R. Miyamoto, D.J.P. Nicosia, D. Noll, D.C. Plostinar, T.J. Shea, R. Tarkeshian, C.A. Thomas, E. Trachanas, P.L. van Velze
    ESS, Lund, Sweden
  • I. Bustinduy, A. Conde, D. Fernández-Cañoto, N. Garmendia, P.J. González, G. Harper, A. Kaftoosian, J. Martin, I. Mazkiaran, J.L. Muñoz, A.R. Páramo, S. Varnasseri, A.Z. Zugazaga
    ESS Bilbao, Zamudio, Spain
 
  The latest beam commissioning phase of the Normal Conducting Linac at ESS delivered a proton beam through the Medium Energy Beam Transport (MEBT) into the first Drift Tube Linac (DTL) tank. The probe beam in MEBT consisted of 3.6 MeV protons of <6 mA, <5 microseconds pulse length and 1 Hz repetition rate. Following the delivery of the components at ESS in Lund in June 2019, the commissioning phase with the MEBT was completed in July 2022. In March 2022, the maximum beam current of 62.5 mA was transported up to the MEBT Faraday cup. This proceeding focuses on the status of MEBT including magnets, buncher cavities, scrapers and beam diagnostics designed and tested in collaboration with ESS Bilbao.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-TUPOJO14  
About • Received ※ 13 August 2022 — Revised ※ 19 August 2022 — Accepted ※ 31 August 2022 — Issue date ※ 01 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOJO15 Commissioning of UKRI-STFC SRF Vertical Test and HPR Reprocessing Facility cavity, SRF, cryogenics, vacuum 380
 
  • M.D. Pendleton, A.E.T. Akintola, R.K. Buckley, G. Collier, K.D. Dumbell, M.J. Ellis, S. Hitchen, P.C. Hornickel, G. Hughes, C.R. Jenkins, A.J. May, P.A. McIntosh, K.J. Middleman, A.J. Moss, S.M. Pattalwar, J.O.W. Poynton, P.A. Smith, A.E. Wheelhouse, S. Wilde
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • G. Jones, M. Lowe, D.A. Mason, G. Miller, C. Mills, J. Mutch, A. Oates, J.T.G. Wilson
    STFC/DL, Daresbury, Warrington, Cheshire, United Kingdom
 
  Mark Pendleton, et al. The UK’s first and only vertical test facility and associated cleanroom reprocessing suite has been developed, commissioned, and entered steady-state operations at the UKRI-STFC Daresbury Laboratory. The facility is capable of 2 K testing of 3 jacketed SRF cavities in a horizontal configuration per 2-week test cycle. We report on the associated cryogenic, RF, UHV, mechanical, cleanroom, and HPR infrastructure. SRF cavity workflows have been developed to meet the requirements of the ESS high beta cavity project within a newly developed quality management system, SuraBee, in accordance with ISO9001. To support standardisation of measurements across the collaboration, reference cavities have been measured for cross-reference between CEA, DESY, and UKRI-STFC. We further report on commissioning objectives, observations, and continuous improvement activities.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-TUPOJO15  
About • Received ※ 24 August 2022 — Revised ※ 31 August 2022 — Accepted ※ 05 September 2022 — Issue date ※ 08 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOJO21 The Pre-Injector Upgrade for the ISIS H Linac ion-source, plasma, linac, MEBT 398
 
  • S.R. Lawrie, R.E. Abel, C. Cahill, D.C. Faircloth, A.P. Letchford, J.H. Macgregor, S. Patel, T.M. Sarmento, J.D. Speed, O.A. Tarvainen, M. Whitehead, T. Wood
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
 
  A new maintenance-free, high current, high duty-factor H linac pre-injector is being commissioned for the ISIS pulsed spallation neutron and muon facility. As well as delivering a low emittance-growth, loss-free beam, the pre-injector incorporates a chopper to facilitate arbitrary bunch time-structures. A 50 Hz, 0.9 ms (4.5% duty factor) RF-driven H ion source operates extremely reliably and with a large available parameter space via a novel microwave ignition gun and a wideband solid-state RF amplifier. A 202.5 MHz medium energy beam transport (MEBT) incorporates eight quadrupole magnets with integrated xy steerers, four quarter-wave re-bunching cavities, four extremely compact beam position monitors and an electrostatic chopper in just two metres of footprint. Beam has been extracted from the ion source and MEBT commissioning is due Spring 2023. Thereafter, the entire pre-injector will be soak-tested offline for a year before installing on the user facility.  
slides icon Slides TUPOJO21 [1.784 MB]  
poster icon Poster TUPOJO21 [3.053 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-TUPOJO21  
About • Received ※ 13 August 2022 — Revised ※ 16 August 2022 — Accepted ※ 29 August 2022 — Issue date ※ 05 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOPA04 First Beam Matching and Transmission Studies on the ESS RFQ rfq, LEBT, emittance, space-charge 414
 
  • D. Noll, R.A. Baron, C.S. Derrez, E.M. Donegani, M. Eshraqi, F. Grespan, H. Hassanzadegan, B. Jones, Y. Levinsen, N. Milas, R. Miyamoto, D.C. Plostinar, A.G. Sosa, R. Zeng
    ESS, Lund, Sweden
  • A.C. Chauveau, O. Piquet
    CEA-IRFU, Gif-sur-Yvette, France
 
  The European Spallation Source will be driven by a 5 MW linear accelerator, producing 2.86 ms long proton beam pulses with a peak current of 62.5 mA at 14 Hz. Following the source commissioning in 2018 and 2019, the RFQ was successfully conditioned and subsequently commissioned with beam in 2021. In this paper, we will present results of studies on beam matching to the RFQ, both for low and high current beam modes, and will compare these results to model predictions.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-TUPOPA04  
About • Received ※ 26 August 2022 — Accepted ※ 05 September 2022 — Issue date ※ 05 September 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOPA05 RFQ Performance During RF Conditioning and Beam Commissioning at ESS rfq, cavity, beam-loading, multipactoring 418
 
  • R. Zeng, G.S. Fedel, B. Jones, R. Miyamoto, D.J.P. Nicosia, D. Noll, A.G. Sosa, A.M. Svensson, E. Trachanas
    ESS, Lund, Sweden
  • M. Baudrier
    CEA-DRF-IRFU, France
  • A.C. Chauveau, M.J. Desmons, P. Hamel, O. Piquet
    CEA-IRFU, Gif-sur-Yvette, France
  • F. Grespan
    INFN/LNL, Legnaro (PD), Italy
 
  RFQ at ESS has been successfully gone through RF conditioning, RF re-conditioning and low duty cycle beam commissioning. RFQ fulfills required functions and overall performance is satisfactory. RF conditioning, three RF re-conditionings after LEBT intervention and beam commissioning will be reported and RFQ performance during these periods will be described. RFQ performance in a large extent is reflected by dynamics and interactions between RF, cavity and beam. Thanks to advanced hardware capabilities and intelligent software intelligence, observation of those dynamics and interactions are done in detailed level. Analysis of those dynamics and interaction will be introduced. Some techniques to deal with challenges resulted from those dynamics and interactions will also be discussed.  
poster icon Poster TUPOPA05 [25.281 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-TUPOPA05  
About • Received ※ 18 August 2022 — Revised ※ 25 August 2022 — Accepted ※ 31 August 2022 — Issue date ※ 05 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOGE01 Commissioning of the VECC Cryomodule cavity, solenoid, ISAC, vacuum 476
 
  • Z.Y. Yao, R. Bjarnason, J. Cheung, K. Fong, J.J. Keir, D. Kishi, S. Kiy, P. Kolb, D. Lang, R.E. Laxdal, B. Matheson, R.S. Sekhon, B.S. Waraich, Q. Zheng, V. Zvyagintsev
    TRIUMF, Vancouver, Canada
 
  A quarter-wave resonator (QWR) cryomodule was designed and assembled at TRIUMF for the energy upgrade of the VECC ISOL-RIB facility to boost radioactive isotopes from 1MeV/u to 2MeV/u. The top loading cryomodule was chosen based on the ISAC-II low energy section design, consisting of four superconducting QWRs and one superconducting solenoid. The major change from ISAC-II concept is separating the RF space vacuum from the isolation vacuum. The cryogenic commissioning was recently completed. The cold mass alignments and the cryogenic heat loads were measured. The cavity performance was qualified in both test regime and operating regime. The cavity degradations caused by magnetic pollution from solenoid and the recovery procedure were verified. This paper will report the detailed results of the commissioning.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-TUPOGE01  
About • Received ※ 23 August 2022 — Revised ※ 28 August 2022 — Accepted ※ 01 September 2022 — Issue date ※ 03 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOGE07 Magnetic Field Measurements and Shielding at the UKRI-STFC Daresbury Laboratory SRF Vertical Test Facility cavity, shielding, simulation, SRF 495
 
  • A.E.T. Akintola, A.R. Bainbridge, S. Hitchen, A.J. May, S.M. Pattalwar, P.A. Smith
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • M. Lowe, D.A. Mason, A.D. Shabalina
    STFC/DL, Daresbury, Warrington, Cheshire, United Kingdom
 
  A novel vertical test facility has been developed, commissioned, and entered steady-state operations at the UKRI-STFC Daresbury Laboratory. The cryostat is designed to test 3 jacketed superconducting RF cavities in a horizontal configuration in a single cool-down run at 2 K. A 2-year program is currently underway to test ESS high-beta cavities. Upon completion of this program, the facility will undertake a testing program for PIP-II HB650 cavities. In the current configuration, a solution combining passive and active magnetic shielding has been validated for the ESS requirement of field attenuation to the level of <1 uT, although continuous field measurements are not provided. This paper reports the implementation of passive and active shielding, along with simulation and experimental measurements thereof.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-TUPOGE07  
About • Received ※ 22 August 2022 — Revised ※ 27 August 2022 — Accepted ※ 30 August 2022 — Issue date ※ 01 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOGE09 Steady-State Cryogenic Operations for the UKRI-STFC Daresbury SRF Vertical Test Facility cavity, cryogenics, operation, SRF 501
 
  • A.J. May, A.E.T. Akintola, R.K. Buckley, G. Collier, K.D. Dumbell, S. Hitchen, P.C. Hornickel, G. Hughes, C.R. Jenkins, S.M. Pattalwar, M.D. Pendleton, P.A. Smith
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
 
  A novel vertical test facility has been developed, commissioned, and entered steady-state operations at the UKRI-STFC Daresbury Laboratory. The cryostat is designed to test 3 jacketed superconducting RF cavities in a horizontal configuration in a single cool-down run at 2 K. The cavities are cooled with superfluid helium filled into their individual helium jackets. This reduces the liquid helium consumption by more than 70% in comparison with the conventional facilities operational elsewhere. The facility is currently undertaking a 2-year program to qualify 84 high-beta SRF cavities for the ESS (European Spallation Source) as part of the UK’s in-kind contribution. This paper reports on the steady-state operations, along with a detailed discussion of the cryogenic performance of the facility, including that of the cryoplant.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-TUPOGE09  
About • Received ※ 13 August 2022 — Revised ※ 21 August 2022 — Accepted ※ 02 September 2022 — Issue date ※ 04 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TH1PA02 Production, Test and Installation of the ESS Spoke, Medium and High Beta Cryomodules cavity, cryomodule, operation, linac 685
 
  • C.G. Maiano
    ESS, Lund, Sweden
 
  We present here an overview of the ESS cryomodule production, test and preparation to tunnel installation, covering both families of modules: spoke and elliptical. Cryomodules and cavities for the ESS linac are in-kind contribution by several of the project partners.  
video icon
 
  please see instructions how to view/control embeded videos  
slides icon Slides TH1PA02 [2.190 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-TH1PA02  
About • Received ※ 23 August 2022 — Revised ※ 30 August 2022 — Accepted ※ 01 September 2022 — Issue date ※ 02 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOJO02 Commissioning of a Movable Bunch Compressor for Sub-fs Electron Bunches electron, dipole, linac, diagnostics 695
 
  • W. Kuropka, R.W. Aßmann, F. Burkart, H. Dinter, S. Jaster-Merz, F. Lemery, F. Mayet, B. Stacey, T. Vinatier
    DESY, Hamburg, Germany
  • R.W. Aßmann
    LNF-INFN, Frascati, Italy
  • S. Jaster-Merz
    University of Hamburg, Institut für Experimentalphysik, Hamburg, Germany
 
  Funding: DESY is a research center within the Helmholtz association HGF.
We present the first commissioning results of the movable bunch compressor (BC) designed for the ARES linac at DESY. The development and simulated performance has been reported earlier and predicts sub-fs electron bunches with high charge densities. Commissioning results of the injector part of the ARES linac delivered promising beam quality results to achieve these numbers. The bunch compressor system is foreseen to be used to bench mark numerical models for coherent synchrotron radiation (CSR) and space charge (SC) for ultra-short electron bunches. Here we will present first measurements of the dispersion as well as calculations for the longitudinal dispersion. In the future the PolariX transverse deflecting structure (TDS) will be commissioned to fully characterize the ARES electron beam.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-THPOJO02  
About • Received ※ 25 August 2022 — Revised ※ 23 August 2022 — Accepted ※ 31 August 2022 — Issue date ※ 15 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOJO09 Status of CLARA at Daresbury Laboratory experiment, gun, laser, linac 711
 
  • D. Angal-Kalinin, A.R. Bainbridge, A.D. Brynes, R.K. Buckley, S.R. Buckley, H.M. Castañeda Cortés, J.A. Clarke, L.S. Cowie, K.D. Dumbell, D.J. Dunning, A.J. Gilfellon, A.R. Goulden, J. Henderson, S. Hitchen, F. Jackson, C.R. Jenkins, M.A. Johnson, J.K. Jones, N.Y. Joshi, M.P. King, S.L. Mathisen, J.W. McKenzie, R. Mclean, K.J. Middleman, B.L. Militsyn, K.T. Morrow, A.J. Moss, B.D. Muratori, T.C.Q. Noakes, W.A. Okell, H.L. Owen, T.H. Pacey, A.E. Pollard, M.D. Roper, Y.M. Saveliev, D.J. Scott, B.J.A. Shepherd, R.J. Smith, E.W. Snedden, N. Thompson, C. Tollervey, R. Valizadeh, D.A. Walsh, A.E. Wheelhouse, P.H. Williams
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • A.R. Bainbridge, A.D. Brynes, J.A. Clarke, L.S. Cowie, K.D. Dumbell, D.J. Dunning, C.R. Jenkins, K.J. Middleman, A.J. Moss, B.D. Muratori, H.L. Owen, Y.M. Saveliev, D.J. Scott, B.J.A. Shepherd, N. Thompson, R. Valizadeh, A.J. Vick, A.E. Wheelhouse
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • A.D. Brynes
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
  • R.J. Cash, R.F. Clarke, M. Colling, G. Cox, B.D. Fell, S.A. Griffiths, M.D. Hancock, T. Hartnett, J.P. Hindley, C. Hodgkinson, G. Marshall, A. Oates, A.J. Vick, J.T.G. Wilson
    STFC/DL, Daresbury, Warrington, Cheshire, United Kingdom
  • J. Henderson
    Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
 
  CLARA (Compact Linear Accelerator for Research and Applications) is a test facility for Free Electron Laser (FEL) research and other applications at STFC’s Daresbury Laboratory. The Front End of CLARA has been used for user exploitation programme from 2018. The second exploitation period in 2021-22 provided a range of beam parameters to 8 user experiments. We report on the status, further machine development, and future plans for CLARA including Full Energy Beam Exploitation (FEBE) beamline which will provide 250 MeV/c high brightness beam for novel experiments.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-THPOJO09  
About • Received ※ 19 August 2022 — Revised ※ 28 August 2022 — Accepted ※ 05 September 2022 — Issue date ※ 15 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOGE01 Study on the Multipactor Barriers of the SARAF-Phase 2 Low-Beta and High-Beta Superconducting Cavities cavity, multipactoring, linac, superconducting-cavity 802
 
  • G. Ferrand, L. Maurice
    CEA-IRFU, Gif-sur-Yvette, France
  • M. Baudrier, N. Pichoff
    CEA-DRF-IRFU, France
 
  CEA is committed to delivering a Medium Energy Beam Transfer line and a superconducting linac (SCL) for SARAF accelerator in order to accelerate 5 mA beam of either protons from 1.3 MeV to 35 MeV or deuterons from 2.6 MeV to 40 MeV. The SCL contains 13 half-wave resonator (HWR) low beta cavities (β= 0.09) at 176 MHz and 14 HWR high-beta cavities (β = 0.18) at 176 MHz. The low-beta and high-beta series were qualified in 2021 and 2022 respectively. This contribution will focus on the observation of the multipactor barriers for all cavi-ties. It will present series of data obtained during the conditioning of these cavities  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-THPOGE01  
About • Received ※ 27 July 2022 — Revised ※ 23 August 2022 — Accepted ※ 07 September 2022 — Issue date ※ 15 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOGE05 Some Interesting Observations During Vertical Test on ESS-HB-704 SRF Cavities cavity, accelerating-gradient, operation, SRF 812
 
  • K.D. Dumbell, A.E.T. Akintola, R.K. Buckley, M.J. Ellis, S. Hitchen, P.C. Hornickel, C.R. Jenkins, J. Lewis, A.J. May, P.A. McIntosh, K.J. Middleman, A.J. Moss, S.M. Pattalwar, M.D. Pendleton, P.A. Smith, A.E. Wheelhouse, S. Wilde
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • M.D. Hancock, J. Hathaway, C. Hodgkinson, G. Jones, M. Lowe, D.A. Mason, G. Miller, J. Mutch, A. Oates, J.T.G. Wilson
    STFC/DL, Daresbury, Warrington, Cheshire, United Kingdom
 
  The vertical test stand in use at Daresbury has three cavities loaded horizontally at different heights. The jacketed cavities are supplied with liquid helium from a header tank at the top of the configuration. A few cavities have been tested in different positions and the results have been analysed. The pressure of the helium inside the jacketed cavities is affected by the height of the liquid helium column above the jacket and using results from earlier analysis during cool-down enables the pressure of the cavity to be determined from the frequency of operation. Analysis of the effects may allow for corrections to the frequency to be made. In addition to the above observations there have also been some challenges in the operation at higher power as the phase of the self-excited loop driving the system, has been seen to change. This paper discusses some of the observation, analysis of those observations and challenges that are being addressed in the continuing use of this facility.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-THPOGE05  
About • Received ※ 10 August 2022 — Revised ※ 13 August 2022 — Accepted ※ 31 August 2022 — Issue date ※ 15 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPORI15 Operation of the CLARA Linear Accelerator with 2.5 Cell 10 Hz Photocathode Gun with Interchangeable Photocathodes cathode, gun, operation, cavity 854
 
  • B.L. Militsyn, D. Angal-Kalinin, A.R. Bainbridge, L.S. Cowie, A.J. Gilfellon, F. Jackson, N.Y. Joshi, K.J. Middleman, K.T. Morrow, T.C.Q. Noakes, M.D. Roper, R. Valizadeh, D.A. Walsh
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • R.J. Cash, B.D. Fell, T.J. Jones, A.J. Vick
    STFC/DL, Daresbury, Warrington, Cheshire, United Kingdom
 
  During commissioning and operation run in 2021-2022 the photoinjector of the CLARA-VELA facility a 2.5 cell cavity S-band photocathode gun originally developed for the APEX experiment was used. The copper back wall of the cavity also served as the gun photocathode. In order to reduce significant time required for replacement and/or reactivation of the photocathode and improve the flexibility of the injector the gun has been upgraded for operation with DESY/INFN style interchangeable photocathodes. This upgrade included a new design of the cavity back wall to accommodate the photocathode socket and equipping the gun with a load-lock system. Modification of the gun also required replacement of the bucking coil, which zeros field in the photocathode emission plane. After the upgrade, the gun was commissioned and then operated with a hybrid Cu/Mo photocathode during the last two years. During winter-spring 2022 experimental run the gun steadily operated with a cathode field of 60 MV/m, limited by the RF power available and with an off-centre diamond turned photocathode which delivered stable bunches with a charge of 100 pC.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-THPORI15  
About • Received ※ 24 August 2022 — Revised ※ 08 September 2022 — Accepted ※ 12 September 2022 — Issue date ※ 15 October 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPORI19 HSMDIS Performance on the ESS Ion Source ion-source, linac, plasma, LEBT 863
 
  • L. Neri, G. Castro, L. Celona, S. Gammino, O. Leonardi, A. Miraglia
    INFN/LNS, Catania, Italy
  • C. Baltador, L. Bellan, M. Comunian, F. Grespan
    INFN/LNL, Legnaro (PD), Italy
  • B. Jones, E. Laface, R. Miyamoto, A.G. Sosa
    ESS, Lund, Sweden
 
  The ESS ion source, developed at INFN-LNS and installed at the ESS facility, is fully working and in operation for the linac beam commissioning. The commissioning of the source was done in Catania and in Lund showing high reproducibility related to the beam diagnostic parameters that can be measured with the subset of equipment currently available in Lund. The analysis of the data collected during the commissioning in Catania discloses the possibility to use a new source configuration named High Stability Microwave Discharge Ion Source (HSMDIS), able to improve beam stability and lower the beam emittance. This paper shows the capability to increase the beam current intensity, with preserving beam stability, by changing only the microwave power. Linearity was tested from 10 to 120 mA to be able to provide the lower values needed for the different phases of the accelerator commissioning and higher values for future accelerator development. The source stability is evaluated through intra-pulse stability and pulse-to-pulse stability.
Reference:
L. Neri, L. Celona "High stability microwave discharge ion sources" Sci Rep 12, 3064 (2022). https://doi.org/10.1038/s41598-022-06937-7
 
slides icon Slides THPORI19 [37.408 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-THPORI19  
About • Received ※ 24 August 2022 — Revised ※ 29 August 2022 — Accepted ※ 01 September 2022 — Issue date ※ 16 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FR1AA04 SARAF Commissioning: Injector, MEBT and Chopper rfq, MEBT, emittance, diagnostics 872
 
  • J. Dumas, D. Chirpaz, D. Darde, J. Dumas, R.D. Duperrier, G. Ferrand, A. Gaget, F. Gohier, F. Gougnaud, T.J. Joannem, V. Nadot, N. Pichoff, F. Senée, C. Simon, D.U. Uriot, L. Zhao
    CEA-IRFU, Gif-sur-Yvette, France
  • A. Chancé
    CEA, Gif-sur-Yvette, France
  • S. Cohen, I.G. Gertz, N. Goldberger, H. Isakov, B. Kaizer, A. Kreisel, J. Luner, I. Mardor, H. Paami, A. Perry, I. Polikarpov, E. Reinfeld, J. Rodnitsky, I. Shmuely, A. Shor, Y. Solomon, N. Tamim, R. Weiss-Babai, L. Weissman, T. Zchut
    Soreq NRC, Yavne, Israel
  • G. Desmarchelier, N. Solenne
    CEA-DRF-IRFU, France
 
  IAEC/SNRC (Israel) is constructing an accelerator fa-cility, SARAF, for neutron production. It is based on a linac accelerating 5 mA CW deuteron and proton beam up to 40 MeV. As a first phase, IAEC constructed and operated a linac (SARAF Phase I), from which remains an ECR ion source, a Low-Energy Beam Transport (LEBT) line and a 4-rod RFQ. Since 2015, IAEC and CEA (France) are collaborating in the second phase, consisting in manufacturing of the linac (Figure 1). The injector control-system has been recently updated and the Medium Energy Beam Transport (MEBT) line has been installed and integrated to the infrastructure. It has been partially commissioned during the first semester of 2022. This paper presents the results of the integration, tests and commissioning of the injector and MEBT, be-fore delivery of the cryomodules.  
video icon
 
  please see instructions how to view/control embeded videos  
slides icon Slides FR1AA04 [2.971 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-FR1AA04  
About • Received ※ 21 August 2022 — Revised ※ 27 August 2022 — Accepted ※ 14 September 2022 — Issue date ※ 15 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)