Keyword: laser
Paper Title Other Keywords Page
MOPOJO09 A Compact Inverse Compton Scattering Source Based on X-Band Technology and Cavity-Enhanced High Average Power Ultrafast Lasers photon, electron, linac, cavity 44
 
  • A. Latina, R. Corsini, L.A. Dyks, E. Granados, A. Grudiev, V. Musat, S. Stapnes, W. Wuensch
    CERN, Meyrin, Switzerland
  • E. Cormier
    CELIA, Talence, France
  • L.A. Dyks
    Oxford University, Physics Department, Oxford, Oxon, United Kingdom
  • G. Santarelli
    ILE, Palaiseau Cedex, France
 
  A high-pulse-current injector followed by a short high-gradient X-band linac is considered as a driver for a compact Inverse Compton Scattering source. We show that using a high-power ultrashort pulse laser operating in burst mode and a Fabry-Pérot enhancement cavity, X-rays with flux values over 1013 ph/s and photon energies up to MeV are achievable. The resulting high-intensity and high-energy X-rays allow for various applications, including cancer therapy, tomography, and nuclear waste management. A preliminary conceptual design of such a compact ICS source is presented, together with simulations of the expected performance.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-MOPOJO09  
About • Received ※ 19 August 2022 — Revised ※ 30 August 2022 — Accepted ※ 01 September 2022 — Issue date ※ 06 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOPA11 Laser-to-RF Synchronisation Drift Compensation for the CLARA test facility detector, FEM, electron, timing 87
 
  • J. Henderson, A.J. Moss, E.W. Snedden
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • A.C. Dexter
    Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
 
  Femtosecond synchronisation between charged particle beams and external laser systems is a significant challenge for modern particle accelerators. To achieve femtosecond synchronisation of the CLARA electron beam and end user laser systems will require tight synchronisation of several accelerator subsystems. This paper reports on a method to compensate for environmentally driven long-term drift in Laser-RF phase detection systems.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-MOPOPA11  
About • Received ※ 22 August 2022 — Revised ※ 26 August 2022 — Accepted ※ 01 September 2022 — Issue date ※ 15 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPORI06 Improvements on the Modified Nomarski Interferometer for Measurements of Supersonic Gas Jet Density Profiles vacuum, experiment, focusing, diagnostics 235
 
  • C. Swain, O. Apsimon, A. Salehilashkajani, C.P. Welsch, J. Wolfenden, H.D. Zhang
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • Ö. Apsimon, A. Salehilashkajani, C. Swain, C.P. Welsch, J. Wolfenden, H.D. Zhang
    The University of Liverpool, Liverpool, United Kingdom
 
  Funding: This work is supported by the AWAKE-UK phase II project funded by STFC, the STFC Cockcroft core grant No. ST/G008248/1 and the HL-LHC-UK phase II project funded by STFC under Grant Ref: ST/T001925/1.
For supersonic gas jet based beam profile monitors such as that developed for the High Luminosity Large Hadron Collider (HL-LHC) upgrade, density profile is a key characteristic. Due to this, non-invasive diagnostics to study the jet’s behaviour have been designed. A Nomarski interferometer was constructed to image jets 30 um to 1 mm in diameter and study changes in their density. A microscope lens has been integrated into the original interferometer system to capture phase changes on a much smaller scale than previous experiments have achieved. This contribution presents the optimisation and results gained from this interferometer.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-MOPORI06  
About • Received ※ 14 August 2022 — Revised ※ 24 August 2022 — Accepted ※ 29 August 2022 — Issue date ※ 01 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPORI18 The Design of the Full Energy Beam Exploitation (FEBE) Beamline on CLARA experiment, electron, diagnostics, FEL 585
 
  • D. Angal-Kalinin, A.R. Bainbridge, J.K. Jones, T.H. Pacey, Y.M. Saveliev, E.W. Snedden
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
 
  The CLARA facility at Daresbury Laboratory was orig-inally designed for the study of novel FEL physics utilis-ing high-quality electron bunches at up to 250 MeV/c. To maximise the exploitation of the accelerator complex, a dedicated full energy beam exploitation (FEBE) beam-line has been designed and is currently being installed in a separate vault on the CLARA accelerator. FEBE will allow the use of high charge (up to 250 pC), moderate energy (up to 250 MeV), electron bunches for a wide variety of accelerator applications critical to ongoing accelerator development in the UK and international communities. The facility consists of a shielded enclo-sure, accessible during beam running in CLARA, with two very large experimental chambers compatible with a wide range of experimental proposals. High-power laser beams (up to 100 TW) will be available for electron-beam interactions in the first chamber, and there are concrete plans for a wide variety of advanced diagnostics (includ-ing a high-field permanent magnet spectrometer and dielectric longitudinal streaker), essential for multiple experimental paradigms, in the second chamber. FEBE will be commissioned in 2024.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-TUPORI18  
About • Received ※ 19 August 2022 — Revised ※ 23 August 2022 — Accepted ※ 28 August 2022 — Issue date ※ 15 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WE1AA03 FACET-II plasma, electron, experiment, diagnostics 631
 
  • C.I. Clarke, J.M. Allen, L.E. Alsberg, A.L. Edelen, H.E. Ekerfelt, C. Emma, E. Gerstmayr, S.J. Gessner, C. Hast, M.J. Hogan, M.D. Litos, R. Loney, S. Meuren, S.A. Miskovich, B.D. O’Shea, M. Parker, D.A. Reis, D.W. Storey, R. Watt, G. Yocky
    SLAC, Menlo Park, California, USA
  • R. Ariniello, C.E. Doss, V. Lee
    CIPS, Boulder, Colorado, USA
  • G.J. Cao
    University of Oslo, Oslo, Norway
  • S. Corde, A. Knetsch, P. San Miguel Claveria
    LOA, Palaiseau, France
  • C.E. Hansel
    Colorado University at Boulder, Boulder, Colorado, USA
  • C. Joshi, K.A. Marsh, Z. Nie, C. Zhang
    UCLA, Los Angeles, California, USA
  • J. Wang
    UNL, Lincoln, Nebraska, USA
 
  Funding: This work performed under DOE Contract DE-AC02-76SF00515 and also supported under FES Award DE-SC0020076.
FACET-II is a National User Facility at SLAC National Accelerator Laboratory providing 10 GeV electron beams with um-rad normalised emittance and peak currents exceeding 100 kA . FACET-II operates as a National User Facility while engaging a broad User community to develop and execute experimental proposals that advance the development of plasma wakefield accelerators. FACET-II is currently commissioned and has started with first experiments. The special features of FACET-II will be shown and first results from the experiments.
 
video icon
 
  please see instructions how to view/control embeded videos  
slides icon Slides WE1AA03 [6.471 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-WE1AA03  
About • Received ※ 20 August 2022 — Revised ※ 23 August 2022 — Accepted ※ 01 September 2022 — Issue date ※ 04 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TH1AA03 Accelerator development for Global Security electron, radiation, FEL, free-electron-laser 657
 
  • S. Biedron
    Element Aero, Chicago, USA
 
  Many facilities and projects in global security have to do with global security concerns. From direct interrogation to radiation testing, there are myriad of security applications of particle accelerators. . This paper will review accelerator design and technology development including novel sources being developed.  
slides icon Slides TH1AA03 [24.972 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-TH1AA03  
About • Received ※ 31 August 2022 — Revised ※ 06 September 2022 — Accepted ※ 16 September 2022 — Issue date ※ 23 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOJO09 Status of CLARA at Daresbury Laboratory experiment, gun, MMI, linac 711
 
  • D. Angal-Kalinin, A.R. Bainbridge, A.D. Brynes, R.K. Buckley, S.R. Buckley, H.M. Castañeda Cortés, J.A. Clarke, L.S. Cowie, K.D. Dumbell, D.J. Dunning, A.J. Gilfellon, A.R. Goulden, J. Henderson, S. Hitchen, F. Jackson, C.R. Jenkins, M.A. Johnson, J.K. Jones, N.Y. Joshi, M.P. King, S.L. Mathisen, J.W. McKenzie, R. Mclean, K.J. Middleman, B.L. Militsyn, K.T. Morrow, A.J. Moss, B.D. Muratori, T.C.Q. Noakes, W.A. Okell, H.L. Owen, T.H. Pacey, A.E. Pollard, M.D. Roper, Y.M. Saveliev, D.J. Scott, B.J.A. Shepherd, R.J. Smith, E.W. Snedden, N. Thompson, C. Tollervey, R. Valizadeh, D.A. Walsh, A.E. Wheelhouse, P.H. Williams
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • A.R. Bainbridge, A.D. Brynes, J.A. Clarke, L.S. Cowie, K.D. Dumbell, D.J. Dunning, C.R. Jenkins, K.J. Middleman, A.J. Moss, B.D. Muratori, H.L. Owen, Y.M. Saveliev, D.J. Scott, B.J.A. Shepherd, N. Thompson, R. Valizadeh, A.J. Vick, A.E. Wheelhouse
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • A.D. Brynes
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
  • R.J. Cash, R.F. Clarke, M. Colling, G. Cox, B.D. Fell, S.A. Griffiths, M.D. Hancock, T. Hartnett, J.P. Hindley, C. Hodgkinson, G. Marshall, A. Oates, A.J. Vick, J.T.G. Wilson
    STFC/DL, Daresbury, Warrington, Cheshire, United Kingdom
  • J. Henderson
    Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
 
  CLARA (Compact Linear Accelerator for Research and Applications) is a test facility for Free Electron Laser (FEL) research and other applications at STFC’s Daresbury Laboratory. The Front End of CLARA has been used for user exploitation programme from 2018. The second exploitation period in 2021-22 provided a range of beam parameters to 8 user experiments. We report on the status, further machine development, and future plans for CLARA including Full Energy Beam Exploitation (FEBE) beamline which will provide 250 MeV/c high brightness beam for novel experiments.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-THPOJO09  
About • Received ※ 19 August 2022 — Revised ※ 28 August 2022 — Accepted ※ 05 September 2022 — Issue date ※ 15 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPA22 C-Band Low Level RF System Using COTS Components LLRF, controls, timing, low-level-rf 789
 
  • J.P. Edelen
    RadiaSoft LLC, Boulder, Colorado, USA
  • R.D. Berry, A. Diego, D.I. Gavryushkin, A.Yu. Smirnov
    RadiaBeam, Santa Monica, California, USA
  • J. Krasna
    COSYLAB, Control System Laboratory, Ljubljana, Slovenia
 
  Low Level RF systems have historically fallen into two categories. Custom systems developed at national laboratories or industrial systems using custom hardware specifically designed for LLRF. Recently however advances in RF technology accompanied by demand from applications like quantum computing have led to commercially available systems that are viable for building a modular low-level RF system. Here we present an overview of a Keysight based digital LLRF system. Our system employs analog upconversion and downconversion with an intermediate frequency of 100MHz. We discuss our phase-reference system and provide initial results on the system performance.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-THPOPA22  
About • Received ※ 25 August 2022 — Revised ※ 01 September 2022 — Accepted ※ 02 September 2022 — Issue date ※ 03 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)