Keyword: FEM
Paper Title Other Keywords Page
MOPOPA11 Laser-to-RF Synchronisation Drift Compensation for the CLARA test facility laser, detector, electron, timing 87
 
  • J. Henderson, A.J. Moss, E.W. Snedden
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • A.C. Dexter
    Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
 
  Femtosecond synchronisation between charged particle beams and external laser systems is a significant challenge for modern particle accelerators. To achieve femtosecond synchronisation of the CLARA electron beam and end user laser systems will require tight synchronisation of several accelerator subsystems. This paper reports on a method to compensate for environmentally driven long-term drift in Laser-RF phase detection systems.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-MOPOPA11  
About • Received ※ 22 August 2022 — Revised ※ 26 August 2022 — Accepted ※ 01 September 2022 — Issue date ※ 15 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WE2AA04 Data Analysis and Control of an MeV Ultrafast Electron Diffraction System using Machine Learning electron, network, real-time, experiment 650
 
  • T.B. Bolin, S. Biedron, M.A. Fazio, M. Martínez-Ramón, S.I. Sosa Guitron
    UNM-ECE, Albuquerque, USA
  • M. Babzien, M.G. Fedurin, J.J. Li, M.A. Palmer
    BNL, Upton, New York, USA
  • S. Biedron
    Element Aero, Chicago, USA
  • S. Biedron
    UNM-ME, Albuquerque, New Mexico, USA
 
  MeV ultrafast electron diffraction (MUED) is a pump-probe material characterization technique to study ultrafast lattice dynamics with high temporal and spatial resolution. It is a relatively young technology that has the potential to shed light onto some of the most puzzling problems in physics. This complex instrument can be advanced into a turn-key high-throughput tool with the aid of machine learning (ML) mechanisms together with high-performance computing. The MUED instrument located in the Accelerator Test Facility of Brookhaven National Laboratory was employed in this work to test different ML approaches for both data analysis and control. We characterized three materials using MUED: graphite, black phosphorous and gold thin films. Diffraction patterns were acquired in single shot mode and different ML methodologies were applied to reduce image noise. Convolutional neural network autoenconder and variational autoenconder models were utilized to extract the noise features and increase the signal-to-noise ratio. The energy jitter of the electron beam was analyzed after noise reduction of the single shot diffraction patterns.  
video icon
 
  please see instructions how to view/control embeded videos  
slides icon Slides WE2AA04 [12.865 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-WE2AA04  
About • Received ※ 30 August 2022 — Revised ※ 02 September 2022 — Accepted ※ 15 September 2022 — Issue date ※ 20 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)