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Abstract 

An MeV ultrafast electron diffraction (MUED) instru-
ment system is a unique characterization technique used to 
study ultrafast processes in a variety of materials systems 
by a pump-probe method. This relatively young technol-
ogy can be advanced further into a turnkey instrument by 
using data science and artificial intelligence (AI) mecha-
nisms in conjunction with high-performance computing. 
This can facilitate automated operation, data acquisition, 
and real-time or near-real-time processing. The AI-based 
system controls can provide real-time feedback on the elec-
tron beam, or provide virtual diagnostics of the beam. Deep 
learning can be applied to the MUED diffraction patterns 
to recover valuable information on subtle lattice variations 
that can lead to a greater understanding of a wide range of 
material systems. A data-science-enabled MUED facility 
will also facilitate the application of this technique, expand 
its user base, and provide a fully automated state-of-the-art 
instrument. Updates on research and development efforts 
for the MUED instrument in the Accelerator Test Facility 
of Brookhaven National Laboratory are presented. 

INTRODUCTION 
MeV ultrafast electron diffraction (MUED) system is a 

pump-probe characterization technique for studying ultra-
fast processes in materials. The use of relativistic electron 
beams leads to decreased space-charge effects compared to 
typical ultrafast electron diffraction experiments employ-
ing energies in the keV range [1-3]. MUED has a higher 
scattering cross section with material samples as compared 
to other probes such as X-ray free electron lasers, and as 
such allows access to higher-order reflections in the dif-
fraction patterns due to the short electron wavelengths. 

However, this is a relatively young technology, and sev-
eral factors contribute to making it challenging to utilize, 
such as beam instabilities that can lower the effective spa-
tial and temporal resolution. In recent years, machine 
learning (ML) approaches to materials and characterization 
techniques have provided a new path towards unlocking 
new physics by improving existing probes and increasing 
the user’s ability to interpret data. Ideally, anomalous con-
tribution detection and removal should not require a priori 
knowledge of what those contributions would be or how 
they would present themselves in the data. Particularly, 
with proper preprocessing, ML methods can be employed 

to control characterization probes in near-real time, acting 
as virtual diagnostics, or ML can be deployed to extract 
features and effectively denoise data. With respect to de-
noising, convolutional neural network architectures, such 
as auto encoder models, are an attractive and more power-
ful alternative to conventional denoising techniques. The 
autoencoder models provide a method of unsupervised 
learning of latent space representation of data that can help 
reduce the noise in the data. It should be noted that noise 
and anomalies aren’t necessarily the same thing, as system-
atic stochastic noise issues may be present. In principle, 
AI/ML can facilitate distinguishing both. 

By supplying a paired training dataset of “noisy” and 
“clean” data, these ML models can denoise measurements 
quite effectively [4, 5]. This method relies on the existence 
of an ideal dataset with no noise, which can be obtained by 
simulation or by averaging existing noisy datasets. How-
ever, in some cases these are not accessible or practical to 
use. Generative adversarial networks (GANs) are a more 
suitable option when no “clean” data are available and have 
been proven to perform well for blind image denoising [6]. 
They can be trained to estimate and generate the noise dis-
tribution, thus producing paired training datasets that can 
be fed to an autoencoder model. These approaches can lead 
to increased resolution if employed to denoise, for exam-
ple, diffraction patterns. In addition, deep convolutional 
neural network architectures can be used for data analysis. 
Laanait et al. measured diffraction patterns of different ox-
ide perovskites using scanning transmission electron mi-
croscopy and, by applying a custom ML algorithm, were 
able to invert the materials structure and recover 3-dimen-
sional atomic distortions [7]. ML has yet to be applied to 
the MUED technique, where it can certainly enable ad-
vances that can further understanding of ultrafast material 
processes in a variety of systems. 

EXPERIMENTAL 
The MUED instrument is located at the Accelerator Test 

Facility at Brookhaven National Laboratory. A schematic 
of the experimental setup is presented in Fig. 1. The details 
of data collection are very briefly described here. The 
femtosecond electron beam is generated using a frequency-
tripled Ti:Sapphire laser that illuminates a copper photo-
cathode, generating a high brightness beam. The electrons 
are bunched in a 1.6-cell rf cavity and accelerated to 
5 MeV. Current parameters of the electron beam source op-
timized for stability are presented in Table 1. The sample 
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chamber is located downstream from the source with a mo-
torized holder for up to nine samples with cryogenic cool-
ing capabilities and a window to allow laser pumping of 
the material. The detector system is placed 4 m down-
stream of the photocathode to collect the diffraction pat-
terns. The detector consists of a phosphor screen followed 
by a copper mirror (with a hole for non-diffracted electrons 
to pass through) and a CCD Andor camera of 512 pixels × 
512 pixels with a large aperture lens. Suitable material sys-
tems for MUED require careful preparation with typical 
lateral sizes of 100-300 μm and roughly < 100 nm thick-
ness to assure electron transparency. Laser fluency is ad-
justed to avoid radiation-induced damage to the sample. 

 
Figure 1: MUED beamline schematic. 

 
Table 1: MUED Source Parameters for Typical Operation 

Beam Energy 3 MeV 
Electrons per pulse 1.25 × 106 
Temporal resolution 180 fs 
Beam diameter 100-300 μm 
Repetition rate 5-48 Hz 
Electron fluence 88-880 s-1μm-2 
  

A schematic of the data pre-processing for ML applica-
tion for noise detection and removal is presented in Fig. 2. 
A given image (dataset) is divided into an array of tiles in 
Fig. 2(a). Noting that for N samples with white noise all 
frequencies contribute equally to a function, these tiles are 
examined for those having an inverse participation ratio 
(IPR) value of 1/N. The IPR is a measure of the contribu-
tion of each frequency (in this case spatial). These tiles are 
ignored.  The resulting image is shown in Fig. 2c. 

Figure 2: ML schematic for data denoising. 

CONCLUSIONS AND FUTURE PLANS 
MeV ultrafast electron diffraction (MUED) is a pump-

probe system to measure dynamic material structure evo-
lution in the time range from femtoseconds to nanosec-
onds. A convolutional autoencoder model was developed 
to reconstruct large sets of diffraction patterns. The model 
trained on all data (unsupervised). An anomaly was found 
to produce a large reconstruction error or different feature 
vector values. Different strategies to detect anomalies were 
also tested. Anomaly detection is ongoing, and multiple ap-
proaches are being considered. The large datasets expected 
from the ATF are well suited for data analysis on a high-
performance computing system, such as at the Argonne 
Leadership Computing Facility, located at Argonne Na-
tional Laboratory. There is an existing account at THETA 
and THETAGPU for this work. 

COVID restrictions have had a significant impact on in-
person testing and experiments and access to resources. 
With the restrictions now lifted, beam time at the facility 
has resumed, and future visits are in the planning process. 
There have been three talks resulting from this work [8-
11]. A manuscript is in preparation on unsupervised anom-
aly detection for MeV ultrafast electron diffraction. Appli-
cations of ML combined with MeV ultrafast electron dif-
fraction at facilities such as the ATF are expected to en-
compass not only materials science; interest has been ex-
pressed in global security challenges such as pandemics. 
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