

Science and Technology Facilities Council

ISIS Neutron and Muon Source

TUP0J021

Scott.Lawrie@stfc.ac.uk isis.stfc.ac.uk

Pre-injector Upgrade for the ISIS H⁻ Linac

- Present ISIS linac loses 50% of beam from ion source to synchrotron
- Install medium energy beam transport (MEBT) between RFQ and DTL
- Less beam-loss \rightarrow less H⁻ beam required from ion source \rightarrow change to RF technology

Beam Position Monitor

Chopper

Re-bunching Cavity

Non-caesiated, external RF-coil H⁻ ion source:

- 50 Hz, 1 ms, 70 kW RF, variable 1.8-4.0 MHz
- Adjustable permanent magnet filter field
- Very low-power ignition gun
- 3D-printed components
- No plasma facing parts → long lifetime

First extracted beam pulse! Next steps:

- Ion source emittance scans
- LEBT and RFQ commissioning
- Beam through MEBT and chopper studies
- One-year soak-test of entire accelerator
- Transfer to ISIS for improved performance