Keyword: accelerating-gradient
Paper Title Other Keywords Page
MOPOJO08 RF Design, Optimization and Multiphysics Study of a β = 1, 1.3 GHz Single Cell Accelerating Cavity for High-Intensity Compact Superconducting Electron Accelerator (HICSEA) cavity, multipactoring, electron, HOM 41
 
  • M. Meena, A. Pathak, R. Varma
    IIT Mumbai, Mumbai, India
 
  High-energy electron accelerators have been used in water purification for several years. They are very effective for the removal of complex impurities. This study aims to design a superconducting electron beam accelerator with an output energy of 1 MeV and beam power of 40 kW for wastewater treatment. A 1.3 GHz single cell elliptic cavity with β = 1 was designed and optimized for TM010 mode and an accelerating gradient of 15 MV/m. For the optimized cavity, the RF parameters, namely, R/Q, transit time factor and geometry factor (G) were found to be 174.93 ohm, 0.67 and 276 ohm, respectively. Multiphysics studies showed that the value of R/Q for fundamental accelerating mode was 174.93 ohm. It was much higher than that of other modes, thus, HOM coupler is not required for the system. The Lorentz force detuning coefficient after stiffening the cavity iris, and the temperature rise due to the RF surface losses were found to be 0.20 Hz/(MV/m)2 and 0.085 K, respectively. It is also observed that there is no occurrence of multipacting for the designed accelerating gradient.  
poster icon Poster MOPOJO08 [1.584 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-MOPOJO08  
About • Received ※ 24 August 2022 — Revised ※ 26 August 2022 — Accepted ※ 01 September 2022 — Issue date ※ 05 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TU1AA06 Next-Generation Nb3Sn Superconducting RF Cavities cavity, SRF, radio-frequency, superconducting-RF 305
 
  • N.M. Verboncoeur, G. Gaitan, M. Liepe, R.D. Porter, L. Shpani, N.A. Stilin, Z. Sun
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Nb3Sn currently is the most promising alternative material for next-generation, higher-performance SRF cavities. Significant recent progress has been made in further increasing efficiency, maximum field, and demonstrating readiness for first applications in actual accelerators. This paper will present an overview of worldwide recent progress in making this material a viable option for further accelerators.  
slides icon Slides TU1AA06 [6.559 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-TU1AA06  
About • Received ※ 31 August 2022 — Revised ※ 01 September 2022 — Accepted ※ 04 September 2022 — Issue date ※ 09 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPORI13 Beam Loading Simulation for Relativistic and Ultrarelativistic Beams in the Tracking Code RF-Track beam-loading, cavity, simulation, linac 569
 
  • J. Olivares Herrador, A. Latina
    CERN, Meyrin, Switzerland
  • D. Esperante Pereira, N. Fuster, B. Gimeno
    IFIC, Valencia, Spain
  • B. Gimeno
    UVEG, Burjasot (Valencia), Spain
 
  Medical and industrial electron linacs can benefit from the X-band accelerating technology developed for the Compact Linear Collider (CLIC) at CERN. However, when high-intensity beams are injected in such high-gradient structures (>35 MV/m), the beam loading effect must be considered by design since this beam-cavity interaction can result in a considerable gradient reduction with respect to the unloaded case. Studying energy conservation, a partial differential equation (PDE) has been derived for injected beams, in both the relativistic and ultrarelativistic limit. Making use of this, a specific simulation package within RF-track has been developed, allowing realistic tracking of charged particle bunches under this effect regardless of their initial velocity. The performance of such tool has been assessed by reproducing previously obtained beam loaded fields in CLIC main linac and CLIC Drive-Beam linac structures. In this paper we present the analytic PDE derivation and the results of the tests.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-TUPORI13  
About • Received ※ 18 August 2022 — Revised ※ 26 August 2022 — Accepted ※ 02 September 2022 — Issue date ※ 07 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOGE03 Design & Multiphysics Analysis of Three-cell, 1.3 GHz Superconducting RF Cavity for Electron Beam Accelerator to Treat Wastewater cavity, electron, multipactoring, HOM 809
 
  • P. Kumar, A. Pathak, R. Varma
    IIT Mumbai, Mumbai, India
 
  To treat industrial effluents including contaminants of emerging concern (CECs), Irradiation treatment by electron beam accelerator has shown promising results. Our aim is to design and develop a superconducting linear electron accelerator. A 1.3 GHz, three cell conduction cooled, TM class superconducting cavity has been proposed to accelerate a 100 mA electron beam from 100 keV to 4.5 MeV. The main aim of the design is to optimize the cavity for low heat loss and high accelerating gradient. The optimized ratio of peak surface electric and magnetic field to accelerating field for cavity are Epk/Eacc= 2.72 and Hpk/Eacc= 4.11 mT/(MV/m). The optimized Geometry factor (G) and R/Q values for this cavity are 246.7 and 306.4 ohms respectively. Here we also addressed other multiphysics issues such as Lorentz force detuning (LFD), Higher order modes (HOMs) and Multipacting. The multiphysics analysis helps to estimate the degree of these challenges. The final Lorentz detuning factor of the cavity has been reduced to 0.12 Hz/(MV/m)2, HOMs of 2.18 and 2.9 GHz modes are dominating except the main mode and Multipacting phenomena is not found at 15 MV/m of accelerating gradient.  
poster icon Poster THPOGE03 [1.121 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-THPOGE03  
About • Received ※ 22 August 2022 — Revised ※ 25 August 2022 — Accepted ※ 01 September 2022 — Issue date ※ 14 October 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOGE05 Some Interesting Observations During Vertical Test on ESS-HB-704 SRF Cavities cavity, operation, MMI, SRF 812
 
  • K.D. Dumbell, A.E.T. Akintola, R.K. Buckley, M.J. Ellis, S. Hitchen, P.C. Hornickel, C.R. Jenkins, J. Lewis, A.J. May, P.A. McIntosh, K.J. Middleman, A.J. Moss, S.M. Pattalwar, M.D. Pendleton, P.A. Smith, A.E. Wheelhouse, S. Wilde
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • M.D. Hancock, J. Hathaway, C. Hodgkinson, G. Jones, M. Lowe, D.A. Mason, G. Miller, J. Mutch, A. Oates, J.T.G. Wilson
    STFC/DL, Daresbury, Warrington, Cheshire, United Kingdom
 
  The vertical test stand in use at Daresbury has three cavities loaded horizontally at different heights. The jacketed cavities are supplied with liquid helium from a header tank at the top of the configuration. A few cavities have been tested in different positions and the results have been analysed. The pressure of the helium inside the jacketed cavities is affected by the height of the liquid helium column above the jacket and using results from earlier analysis during cool-down enables the pressure of the cavity to be determined from the frequency of operation. Analysis of the effects may allow for corrections to the frequency to be made. In addition to the above observations there have also been some challenges in the operation at higher power as the phase of the self-excited loop driving the system, has been seen to change. This paper discusses some of the observation, analysis of those observations and challenges that are being addressed in the continuing use of this facility.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-THPOGE05  
About • Received ※ 10 August 2022 — Revised ※ 13 August 2022 — Accepted ※ 31 August 2022 — Issue date ※ 15 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOGE22 Medium Temperature Treatments of Superconducting Radio Frequency Cavities at DESY cavity, niobium, SRF, factory 840
 
  • L. Steder, C. Bate, H. Remde, D. Reschke, J. Schaffran, L. Trelle, H. Weise, M. Wiencek
    DESY, Hamburg, Germany
  • M. Wenskat
    University of Hamburg, Institut für Experimentalphysik, Hamburg, Germany
 
  Over the last years several different approaches to increase the performance of superconducting radio frequency (SRF) cavities by heat treatments have been developed and tested. At DESY, the R&D aims for cavities with enlarged quality factors while maintaining high accelerating gradients, since an envisaged upgrade of the European XFEL requires both. For this purpose, medium temperature (mid-T) treatments around 300 °C seem to be very promising. Lately, the furnace infrastructure at DESY was refurbished and now a niobium-retort furnace capable of carrying 1.3 GHz nine-cell cavities can be used for R&D studies. Vertical test results of single-cell cavities treated in this furnace at medium temperatures are presented and compared to four cavities treated similarly in a furnace at the company Zanon Research & Innovation Srl (Zanon). All mentioned cavities show enlarged quality factors but at the same time reduced gradients compared to their reference measurements before the mid-T treatment. The DESY treatments were accompanied by small niobium samples for surface analyses, which are also presented. Furthermore, the influence of post-treatment high pressure water rinsings is studied.  
slides icon Slides THPOGE22 [1.277 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-THPOGE22  
About • Received ※ 19 August 2022 — Revised ※ 23 August 2022 — Accepted ※ 27 August 2022 — Issue date ※ 15 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)