Keyword: factory
Paper Title Other Keywords Page
MOPORI03 Development of Quantum Gas Jet Beam Profile Monitor for Sub-mm Beams electron, experiment, space-charge, focusing 223
 
  • N. Kumar, O. Stringer, C.P. Welsch, J. Wolfenden, H.D. Zhang
    The University of Liverpool, Liverpool, United Kingdom
  • N. Kumar, C.P. Welsch, J. Wolfenden, H.D. Zhang
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • I. Maltusch
    FH Aachen, Jülich, Germany
 
  Funding: This work is supported by the STFC grants ST/W000687/1 and ST/W002159/1, InnovateUK Germinator 10004615, HL-LHC-UK project funded by STFC and CERN and the STFC Cockcroft core grant No. ST/G008248/1.
The development work of a high-resolution quantum gas jet beam profile monitor for highly energetic sub-mm particle beams is in progress at the Cockcroft Institute (CI), UK. This device is designed on the principle of detecting the secondary ions from the ionisation induced in the interaction between the quantum gas jet and charged particle beams. This monitor aims to generate an intense gas jet with a diameter of less than 100 µm, which can ultimately lead to superior position resolution and high signal intensity resulting from a strongly focused quantum gas jet. This is done by exploiting the quantum wave feature of the neutral gas atoms to generate an interference pattern with a single maximum acting as an ultra-thin gas jet using an ’atom sieve’ which is similar to the light focusing with a Fresnel zone plate. This device will be minimally interceptive and will work analogously to a mechanical wire scanner. This contribution gives a general overview of the design, working principle of the monitor and experimental results obtained from the electron beam profile measurements carried out at the Cockcroft Institute.
 
poster icon Poster MOPORI03 [1.581 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-MOPORI03  
About • Received ※ 13 August 2022 — Revised ※ 16 August 2022 — Accepted ※ 30 August 2022 — Issue date ※ 01 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOPA09 RF Measurements and Tuning of the CERN 750 MHz ELISA-RFQ for Public Exhibition rfq, simulation, quadrupole, proton 426
 
  • M. Marchi, A. Grudiev, S.J. Mathot, H.W. Pommerenke
    CERN, Meyrin, Switzerland
 
  Over the last few years CERN has successfully designed, built and commissioned the smallest RFQ to date, the one meter long PIXE-RFQ operating at 750 MHz. Its compactness offers a unique opportunity for education and public presentation of the accelerator community: A duplicate machine called ELISA-RFQ (Experimental Linac for Surface Analysis) will be exhibited in the Science Gateway, CERN’s upcoming scientific education and outreach center. It will allow the public to approach within a few centimeters a live proton beam injected into air, which is visible to the naked eye. The construction of the ELISA-RFQ has been completed in 2022. In this paper, we present the results of low-power RF measurements as well as field and frequency tuning.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-TUPOPA09  
About • Received ※ 14 August 2022 — Revised ※ 18 August 2022 — Accepted ※ 30 August 2022 — Issue date ※ 01 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOGE22 Medium Temperature Treatments of Superconducting Radio Frequency Cavities at DESY cavity, niobium, SRF, accelerating-gradient 840
 
  • L. Steder, C. Bate, H. Remde, D. Reschke, J. Schaffran, L. Trelle, H. Weise, M. Wiencek
    DESY, Hamburg, Germany
  • M. Wenskat
    University of Hamburg, Institut für Experimentalphysik, Hamburg, Germany
 
  Over the last years several different approaches to increase the performance of superconducting radio frequency (SRF) cavities by heat treatments have been developed and tested. At DESY, the R&D aims for cavities with enlarged quality factors while maintaining high accelerating gradients, since an envisaged upgrade of the European XFEL requires both. For this purpose, medium temperature (mid-T) treatments around 300 °C seem to be very promising. Lately, the furnace infrastructure at DESY was refurbished and now a niobium-retort furnace capable of carrying 1.3 GHz nine-cell cavities can be used for R&D studies. Vertical test results of single-cell cavities treated in this furnace at medium temperatures are presented and compared to four cavities treated similarly in a furnace at the company Zanon Research & Innovation Srl (Zanon). All mentioned cavities show enlarged quality factors but at the same time reduced gradients compared to their reference measurements before the mid-T treatment. The DESY treatments were accompanied by small niobium samples for surface analyses, which are also presented. Furthermore, the influence of post-treatment high pressure water rinsings is studied.  
slides icon Slides THPOGE22 [1.277 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-THPOGE22  
About • Received ※ 19 August 2022 — Revised ※ 23 August 2022 — Accepted ※ 27 August 2022 — Issue date ※ 15 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)