Keyword: superconducting-RF
Paper Title Other Keywords Page
TU1AA06 Next-Generation Nb3Sn Superconducting RF Cavities cavity, SRF, accelerating-gradient, radio-frequency 305
 
  • N.M. Verboncoeur, G. Gaitan, M. Liepe, R.D. Porter, L. Shpani, N.A. Stilin, Z. Sun
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Nb3Sn currently is the most promising alternative material for next-generation, higher-performance SRF cavities. Significant recent progress has been made in further increasing efficiency, maximum field, and demonstrating readiness for first applications in actual accelerators. This paper will present an overview of worldwide recent progress in making this material a viable option for further accelerators.  
slides icon Slides TU1AA06 [6.559 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-TU1AA06  
About • Received ※ 31 August 2022 — Revised ※ 01 September 2022 — Accepted ※ 04 September 2022 — Issue date ※ 09 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOGE10 RF Characterisation of Bulk Niobium and Thin Film Coated Planar Samples at 7.8 GHz cavity, SRF, site, operation 818
 
  • D.J. Seal, G. Burt, O.B. Malyshev, B.S. Sian, R. Valizadeh
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • G. Burt, D.J. Seal, B.S. Sian
    Lancaster University, Lancaster, United Kingdom
  • E. Chyhyrynets, C. Pira
    INFN/LNL, Legnaro (PD), Italy
  • O. Hryhorenko, D. Longuevergne
    Université Paris-Saclay, CNRS/IN2P3, IJCLab, Orsay, France
  • O.B. Malyshev, E.A. Marshall, R. Valizadeh
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • H.S. Marks
    Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
 
  Research is ongoing into the use of superconducting thin films to replace bulk niobium for future radio frequency (RF) cavities. A key part of this research requires measuring the RF properties of candidate films. However, coating and testing thin films on full-sized cavities is both costly and time-consuming. Instead, films are typically deposited on small, flat samples and characterised using a test cavity. A cost-effective facility for testing such samples has recently been built and commissioned at Daresbury Laboratory. The facility allows for low power surface resistance measurements at a resonant frequency of 7.8 GHz, temperatures down to 4 K and sample surface magnetic fields up to 1 mT. A brief overview of this facility as well as recent results from measurements of both bulk Nb and thin film coated samples will be presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-THPOGE10  
About • Received ※ 11 August 2022 — Revised ※ 19 August 2022 — Accepted ※ 01 September 2022 — Issue date ※ 16 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)