Keyword: solenoid
Paper Title Other Keywords Page
MOPOJO17 Design and Optimization of a 100 kV DC Thermionic Electron Gun and Transport Channel for a 1.3 GHz High Intensity Compact Superconducting Electron Accelerator (HICSEA) electron, gun, cathode, cavity 65
 
  • P. Nama, A. Pathak, R. Varma
    IIT Mumbai, Mumbai, India
 
  Here we present, the design and optimization of a 100 kV DC thermionic electron gun, and a transport channel that provides transverse focusing through a normal conducting solenoid and longitudinal bunching with the help of a single gap buncher for a 1.3 GHz, 40 kW, 1 MeV superconducting electron accelerator. The accelerator is proposed to treat various contaminants present in potable water resources. A 100 kV thermionic electron gun with LaB6 as its cathode material was intended to extract a maximum beam current of 500 mA. To minimize beam emittance, gun geometry i.e. cathode radius, and height and radius of the focusing electrode are optimized. The minimal obtained emittance at the gun exit is 0.3 mm.mrad. A normal conducting focusing solenoid with an iron encasing is designed and optimized to match and transport the beam from gun exit to the superconducting cavity. Finally, a 1.3 GHz ELBE type buncher is designed and optimized to bunch the electron beam for further acceleration.  
slides icon Slides MOPOJO17 [1.268 MB]  
poster icon Poster MOPOJO17 [0.813 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-MOPOJO17  
About • Received ※ 23 August 2022 — Revised ※ 24 August 2022 — Accepted ※ 27 August 2022 — Issue date ※ 31 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOPA19 Preparation for Commissioning with Beam of "Advanced Demonstrator" Module with Heavy Ion Beam cavity, linac, heavy-ion, MMI 114
 
  • M. Miski-Oglu, W.A. Barth, M. Basten, C. Burandt, F.D. Dziuba, T. Kürzeder, S. Lauber, J. List, S. Yaramyshev
    HIM, Mainz, Germany
  • W.A. Barth, M. Basten, C. Burandt, F.D. Dziuba, V. Gettmann, T. Kürzeder, S. Lauber, J. List, S. Yaramyshev
    GSI, Darmstadt, Germany
  • W.A. Barth, F.D. Dziuba, S. Lauber, J. List
    KPH, Mainz, Germany
  • H. Podlech, M. Schwarz
    IAP, Frankfurt am Main, Germany
 
  The integration of the accelerator components in to the cryogenic module prototype (Advanced Demonstrator) is a major milestone of the R&D for the superconducting heavy ion continuous wave linear accelerator HELIAC at GSI. The HELIAC is joint project of Helmholtz Institute Mainz (HIM) and GSI developed in collaboration with IAP Goethe University Frankfurt. This module is equipped with three superconducting (sc) Cross bar H-mode (CH) acceleration cavities CH0-CH2 and a sc rebuncher cavity, as well as two sc solenoids. The commissioning of the cryogenic module with Argon beam at GSI is scheduled for August 2023. In preparation for the beam test activities, the beamline, which connects the High Charge State Injector (HLI) with the testing area, has been installed. The beamline comprises a pair of phase probes for Time Of Flight (TOF) measurement of the incoming beam energy, quadrupole lenses and a 4-gap RF-buncher cavity. The beam diagnostics bench behind the cryo module is equipped with phase probe pairs, a slit-grid device, a bunch shape monitor (Feshenko monitor) for measurements of the longitudinal beam profile. The bench allows complete 6d characterization of the ion beam.  
poster icon Poster MOPOPA19 [3.074 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-MOPOPA19  
About • Received ※ 24 August 2022 — Revised ※ 29 August 2022 — Accepted ※ 01 September 2022 — Issue date ※ 04 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOPA24 High-Brightness RFQ Injector for LANSCE Multi-Beam Operation rfq, emittance, quadrupole, operation 130
 
  • Y.K. Batygin, D.A.D. Dimitrov, I. Draganić, D.V. Gorelov, E. Henestroza, S.S. Kurennoy
    LANL, Los Alamos, New Mexico, USA
 
  Funding: Work supported by US DOE under contract 89233218CNA000001
The unique feature of the LANSCE accelerator facility is multi beam operation. Accelerator delivers 100 MeV H+ and 800 MeV H beams to five experimental areas. The LANSCE front end is equipped with two independent injectors for H+ and H beams, merging at the entrance of a Drift Tube Linac (DTL). Existing Cockcroft-Walton (CW) - based injector provides conservation of high value of beams brightness before injection into DTL. To reduce long-term operational risks and support beam delivery with high reliability, we designed an RFQ-based front end as a modern injector replacement for the CW injectors. Proposed injector includes two independent low-energy transports merging beams at the entrance of a single RFQ, which accelerates simultaneously both protons and H ions with multiple flavors of the beams. Paper discusses details of beam physics design and presents injector parameters.
 
slides icon Slides MOPOPA24 [3.266 MB]  
poster icon Poster MOPOPA24 [5.806 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-MOPOPA24  
About • Received ※ 21 August 2022 — Revised ※ 26 August 2022 — Accepted ※ 28 August 2022 — Issue date ※ 01 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPORI09 Linear Accelerator for Demonstration of X-Ray Radiotherapy with Flash Effect linac, electron, radiation, target 243
 
  • S.V. Kutsaev, R.B. Agustsson, S. Boucher, K. Kaneta, A.Yu. Smirnov, V.S. Yu
    RadiaBeam, Santa Monica, California, USA
  • A.R. Li, K. Sheng
    UCLA, Los Angeles, California, USA
 
  Funding: This project is funded by NIH, award number NIH R01CA255432.
Emerging evidence indicates that the therapeutic window of radiotherapy can be significantly increased using ultra-high dose rate dose delivery (FLASH), by which the normal tissue injury is reduced without compromising tumor cell killing. The dose rate required for FLASH is 40 Gy/s or higher, 2-3 orders of magnitude greater than conventional radiotherapy. Among the major technical challenges in achieving the FLASH dose rate with X-rays is a linear accelerator that is capable of producing such a high dose rate. We will discuss the design of a high dose rate 18 MeV linac capable of delivering 100 Gy/s of collimated X-rays at 20 cm. This linac is being developed by a RadiaBeam/UCLA collaboration for a preclinical system as a demonstration of the FLASH effect in small animals.
 
slides icon Slides MOPORI09 [0.954 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-MOPORI09  
About • Received ※ 19 August 2022 — Revised ※ 22 August 2022 — Accepted ※ 29 August 2022 — Issue date ※ 02 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOGE01 Commissioning of the VECC Cryomodule cavity, MMI, ISAC, vacuum 476
 
  • Z.Y. Yao, R. Bjarnason, J. Cheung, K. Fong, J.J. Keir, D. Kishi, S. Kiy, P. Kolb, D. Lang, R.E. Laxdal, B. Matheson, R.S. Sekhon, B.S. Waraich, Q. Zheng, V. Zvyagintsev
    TRIUMF, Vancouver, Canada
 
  A quarter-wave resonator (QWR) cryomodule was designed and assembled at TRIUMF for the energy upgrade of the VECC ISOL-RIB facility to boost radioactive isotopes from 1MeV/u to 2MeV/u. The top loading cryomodule was chosen based on the ISAC-II low energy section design, consisting of four superconducting QWRs and one superconducting solenoid. The major change from ISAC-II concept is separating the RF space vacuum from the isolation vacuum. The cryogenic commissioning was recently completed. The cold mass alignments and the cryogenic heat loads were measured. The cavity performance was qualified in both test regime and operating regime. The cavity degradations caused by magnetic pollution from solenoid and the recovery procedure were verified. This paper will report the detailed results of the commissioning.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-TUPOGE01  
About • Received ※ 23 August 2022 — Revised ※ 28 August 2022 — Accepted ※ 01 September 2022 — Issue date ※ 03 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOGE11 Application of the ASME Boiler and Pressure Vessel Code in the design of SSR Cryomodule Beamlines for PIP-II Project at Fermilab cavity, alignment, cryomodule, operation 507
 
  • J. Bernardini, M. Chen, M. Parise, D. Passarelli
    Fermilab, Batavia, Illinois, USA
 
  Funding: Work supported by Fermi Research Alliance, LLC under Contract No. DEAC02- 07CH11359 with the United States Department of Energy, Office of Science, Office of High Energy Physics.
This contribution reports the design of the main components used to interconnect SRF cavities and superconducting focusing lenses in the SSR Cryomodule beamlines, developed in the framework of the PIP-II project at Fermilab. The focus of the present contribution is on the design and testing of the edge-welded bellows according to ASME Boiler and Pressure Vessel Code. The activities performed to qualify the bellows to be assembled in cleanroom, for operation in high vacuum, cryogenic environments, and their characterization from magnetic standpoint, will also be presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-TUPOGE11  
About • Received ※ 22 August 2022 — Revised ※ 24 August 2022 — Accepted ※ 02 September 2022 — Issue date ※ 16 October 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOGE12 Final Design of the Pre-Production SSR2 Cryomodule for PIP-II Project at Fermilab cryomodule, vacuum, cavity, alignment 511
 
  • J. Bernardini, C. Boffo, M. Chen, J. Helsper, M. Kramp, F.L. Lewis, T.H. Nicol, M. Parise, D. Passarelli, V. Roger, G.V. Romanov, B. Squires, M. Turenne
    Fermilab, Batavia, Illinois, USA
 
  Funding: Work supported by Fermi Research Alliance, LLC under Contract No. DEAC02- 07CH11359 with the United States Department of Energy, Office of Science, Office of High Energy Physics.
The present contribution reports the design of the pre-production Single Spoke Resonator Type 2 Cryomodule (ppSSR2 CM), developed in the framework of the PIP-II project at Fermilab. The innovative design is based on a structure, the strongback, which supports the coldmass from the bottom, stays at room temperature during operations, and can slide longitudinally with respect to the vacuum vessel. The Fermilab style cryomodule developed for the prototype Single Spoke Resonator Type 1 (pSSR1) and the prototype High Beta 650 MHz (pHB650) cryomodules is the baseline of the current design, which paves the way for production SSR1 and SSR2 cryomodules for the PIP-II linac. The focus of this contribution is on the results of calculations and finite element analysis performed to optimize the critical components of the cryomodule: vacuum vessel, strongback, thermal shield, and magnetic shield.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-TUPOGE12  
About • Received ※ 24 August 2022 — Revised ※ 26 August 2022 — Accepted ※ 30 August 2022 — Issue date ※ 02 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPORI16 The PSI Positron Production Project positron, cavity, emittance, electron 577
 
  • N. Vallis, B. Auchmann, P. Craievich, M. Duda, H. Garcia Rodrigues, J. Kosse, F. Marcellini, M. Schaer, R. Zennaro
    PSI, Villigen PSI, Switzerland
 
  Funding: CHART (Swiss Accelerator Research and Technology)
The PSI Positron Production project (P3 or P-cubed) is a demonstrator for a novel positron source for FCC-ee. The high current requirements of future colliders can be compromised by the extremely high positron emittance at the production target and consequent poor capture and transport to the damping ring. However, recent advances in high-temperature superconductors allow for a highly efficient matching of such an emittance through the use a solenoid around the target delivering a field over 10 T on-axis. Moreover, the emittance of the matched positron beam can be contained through large aperture RF cavities surrounded by a multi-Tesla field generated by conventional superconducting solenoids, where simulations estimate a yield higher by one order of magnitude with respect to the state-of-the-art. The goal of P3 is to demonstrate this basic principle by implementing the aforementioned solenoids into a prototype positron source based on a 6 GeV electron beam from the SwissFEL linac, two RF capture cavities and a beam diagnostics section.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-TUPORI16  
About • Received ※ 15 August 2022 — Revised ※ 24 August 2022 — Accepted ※ 02 September 2022 — Issue date ※ 09 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPORI24 Beam Dynamics Studies at the PIP-II Injector Test Facility MEBT, cryomodule, rfq, emittance 601
 
  • J.-P. Carneiro, B.M. Hanna, E. Pozdeyev, L.R. Prost, A. Saini, A.V. Shemyakin
    Fermilab, Batavia, Illinois, USA
 
  A series of beam dynamic studies were performed in 2020-2021 at the PIP-II Injector Test Facility (PIP2IT) that has been built to validate the concept of the front-end of the PIP-II linac being constructed at Fermilab. PIP2IT is comprised of a 30-keV H ion source, a 2 m-long Low Energy Beam Transport (LEBT), a 2.1- MeV CW RFQ, followed by a 10-m Medium Energy Beam Transport (MEBT), 2 cryomodules accelerating the beam to 16 MeV and a High-Energy Beam Transport (HEBT) bringing the beam to an absorber. This paper presents beam dynamics - related measurements performed at PIP2IT as the Twiss parameters with Allison scanners, beam envelopes along the injector, and transverse and longitudinal rms emittance reconstruction. These measurements are compared with predictions from the beam dynamics code Tracewin.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-TUPORI24  
About • Received ※ 21 August 2022 — Revised ※ 25 August 2022 — Accepted ※ 31 August 2022 — Issue date ※ 15 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPORI28 Injector System Development for 1 MeV/n RFQ at KOMAC rfq, ion-source, proton, extraction 615
 
  • H.S. Kim
    KAERI, Daejon, Republic of Korea
  • J.J. Dang, D.-H. Kim, H.-J. Kwon, S. Lee, S.P. Yun
    KOMAC, KAERI, Gyeongju, Republic of Korea
 
  Funding: This work has been supported through the KOMAC operation fund of KAERI by the Korean government (MSIT).
A Radiofrequency quadrupole (RFQ) system with 200 MHz frequency and 1 MeV/n output energy is under development at KOMAC (Korea Multi-purpose Accelerator Complex) for multiple purposes such as a test-stand for an ion source and low energy beam transport study, ion beam implantation for semiconductors and polymers and neutron generation for material study. We developed an injector system for the RFQ, which is mainly composed of a 2.45 GHz microwave ion source, low energy beam transport with two solenoids, and a vacuum system with a diagnostic chamber. The RFQ was designed to be able to accelerate the beam with 2.5 mass-to-charge ratios (A/q) but we used the proton beam for an initial test to characterize the injector system. A Detailed describtion of the constructed injector system along with test results will be given in this paper.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-TUPORI28  
About • Received ※ 22 August 2022 — Revised ※ 26 August 2022 — Accepted ※ 29 August 2022 — Issue date ※ 15 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPORI30 Application of Permanent Magnets in Solenoid and Quadrupole Focusing quadrupole, permanent-magnet, focusing, vacuum 622
 
  • J.D. Kaiser, A. Ateş, H. Hähnel, U. Ratzinger
    IAP, Frankfurt am Main, Germany
 
  Permanent magnets can be used to design compact high gradient focusing elements for particle accelerators. Based on cheap industrial standard Neodym permanent magnets, design studies for Solenoids and Quadrupoles are presented. The Solenoid design consists of three segments, where the outer segments possess a radial magnetization and the inner segments an axial magnetization. This increases the mean field strength in comparison to a singlet hollow cylinder solenoid. The quadrupole design consists of 16 block magnets and is designed to be rather simplistic. The casing consists of two half shells, which can be easily mounted around a beam pipe. For a quadrupole triplet configuration the influence of different geometric parameters on beam transport regarding focusing strength and emittance growth is investigated. Furthermore, a variation of the quadrupole design was mounted in vacuum in a triplet configuration. Using custom 3D-printed mounts for small raspberry pi cameras the beam could be observed inside the quadrupoles. A first prototype was constructed  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-TUPORI30  
About • Received ※ 13 August 2022 — Revised ※ 17 August 2022 — Accepted ※ 02 September 2022 — Issue date ※ 04 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)