Paper ID: MOPOJ017

Design & optimization of a 100 kV DC thermionic electron gun and transport channel for a 1.3 GHz High Intensity Compact Superconducting Electron Accelerator (HICSEA)

By Pragya Nama

Department of Physics Indian Institute of Technology Bombay

Under supervision of **Prof. Raghava Varma**

Science and Technology Facilities Council

MOTIVATION

MOTIVATION

3 meter

MOTIVATION

Advantages:

- Eco friendly technology
- Compact, reliable, easy to control
- About 100% disinfection of micro-organisms by destruction of their DNA's

I.3 GHz High Intensity Compact Superconducting Electron Accelerator (HICSEA) 4

GUN DESIGN

Final parameters at the location of the solenoid which is 6 cm away from the cathode

GUN DESIGN

Final parameters at the location of the solenoid which is 6 cm away from the cathode

Parameter	Value
Operating temperature	1940 K
Potential	100 kV
Current	500 mA
Distance b/w anode-cathode	20 mm
Cathode radius	1.25 mm
Height of focusing electrode	5 mm
Radius of focusing electrode	13 mm
Beam diameter	5 mm
Normalized RMS transverse emittance	0.3 mm.mrad

SOLENOID DESIGN

SOLENOID DESIGN

SOLENOID DESIGN

Final parameters at the location of the buncher cavity

Parameter	Value
length	8 cm
Coil current	1 A
Number of turns	2000
Inner radius of solenoid	35 mm
Outer radius of solenoid	100 mm
Thickness of iron cover	1 mm
Magnetic field	0.027 T
Beam diameter	3 mm
Normalized RMS transverse emittance	0.4 mm.mrad

0.1

0.12

CONCLUSION

- A DC thermionic gun, and transport channel consisting of solenoid and buncher cavity is designed and optimized for the proposed system.
- Currently, Beam dynamic study is going on for the designed system.

- I would like to acknowledge Dr. Abhishek Pathak for the guidance and motivation for the study.
- Thankful to my labmates Anjali, Pankaj and Manisha for support and discussions
- I am grateful to LINAC 2022 organizing team for giving me the opportunity and financial support.

THANK YOU