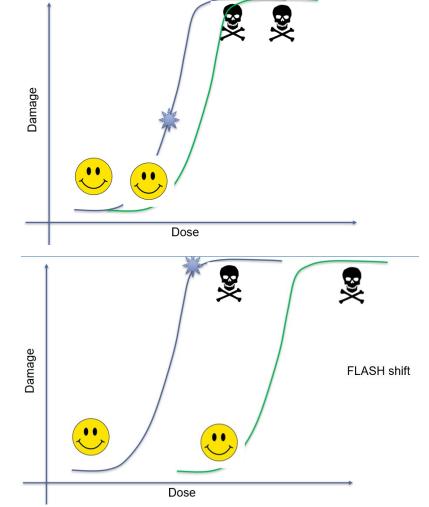


Linear Accelerator for Demonstration of X-ray Radiotherapy With FLASH Effect

International Linear Accelerator Conference 2022 (LINAC'22) August 29, 2022

> Sergey V Kutsaev on behalf of RadiaBeam team

FLASH Radiotherapy

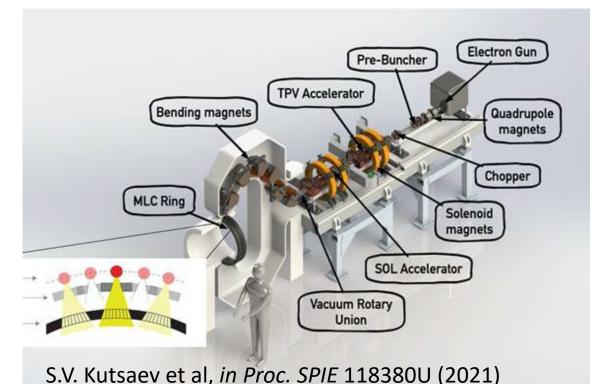

Recent trials have shown that ultrafast delivery of large doses (>40 Gy/s) to a tumor significantly reduces damage to surrounding tissues and increases the treatment efficacy. This method of irradiation is called FLASH therapy

Advantages:

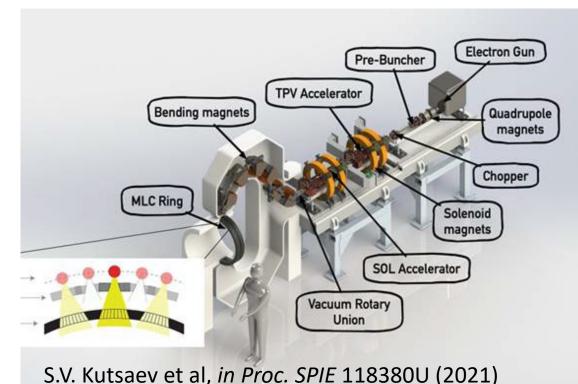
reduced the normal tissue toxicity the same or better tumor cell killing

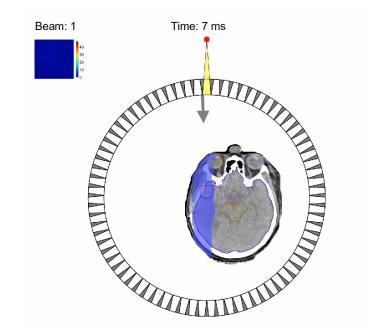
Technical challenges:

Electrons: only applicable to superficial tumors X-rays: a high output X-ray linac and a method to intensity-modulate the high-dose-rate X-rays

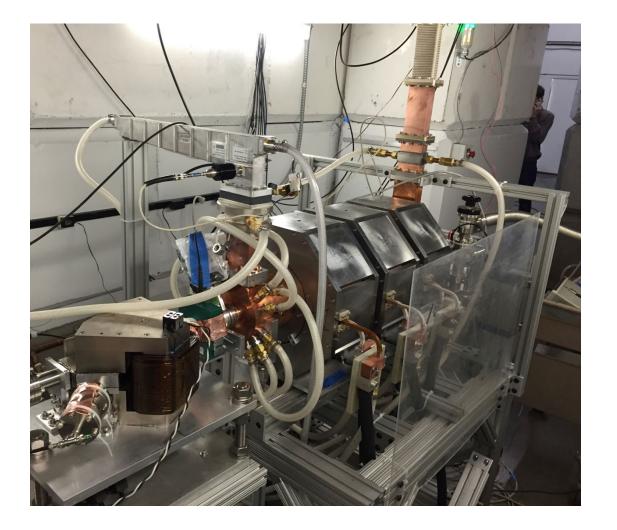


- RadiaBeam with UCLA are working to design and build a single linac solution based on a ROtational direct Aperture optimization with a Decoupled (ROAD) multi-leaf collimator (MLC) ring
- The linac pulses are timed to align with a counter-rotating ring of 75 pre-shaped MLC apertures. As both the linac and MLC ring rotate in opposite directions at 60 rpm, 150 modulated beams are delivered in 1 s, with each delivering up to 0.67 Gy to the tumor
- For clinical system, 100 Gy/s @ 80cm (collimated) is required




Q. Lyu et al, Phys. Med. Biol. 66(3), 035020 (2021)

- RadiaBeam with UCLA are working to design and build a single linac solution based on a ROtational direct Aperture optimization with a Decoupled (ROAD) multi-leaf collimator (MLC) ring
- The linac pulses are timed to align with a counter-rotating ring of 75 pre-shaped MLC apertures. As both the linac and MLC ring rotate in opposite directions at 60 rpm, 150 modulated beams are delivered in 1 s, with each delivering up to 0.67 Gy to the tumor
- For clinical system, 100 Gy/s @ 80cm (collimated) is required


Q. Lyu et al, Phys. Med. Biol. 66(3), 035020 (2021)

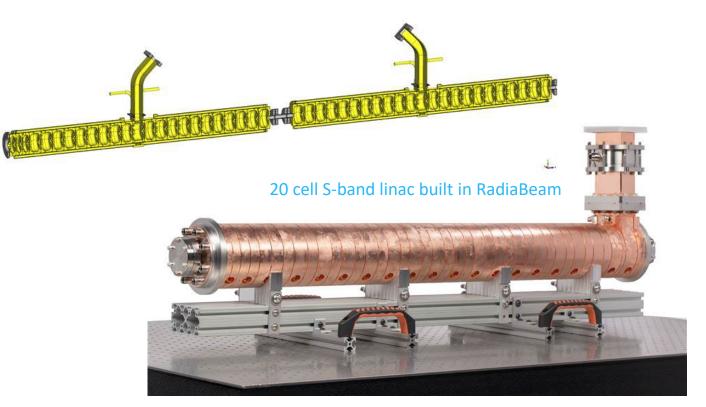
FLASH Linac Parameters

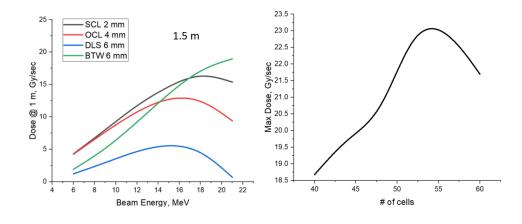
Demonstration system is designed to produce 400Gy/s @ 20cm, uncollimated

- Recently, RadiaBeam has developed a 9 MeV electron linac with 75 Gy/s @ 20cm
 - We plan to reuse the expensive infrastructure from this linac
 - And build a new accelerating structure to increase the dose to 16.5 Gy/s @ 1m (x5.5 higher)
 - Using the same amount of RF power!
- Available power source:
 - S-band klystron (amplifier)
 - 5 MW peak power
 - -0.4% duty cycle = 20 kW average power
 - 16 μs pulse length @ 250 pps

S.V. Kutsaev et al., "Linear Accelerator for Security, Industrial and Medical Applications with Rapid Beam Parameters Variation", Radiat. Phys. Chem. 183, 109398, 2021.

Linac for FLASH Demonstration




 How to improve the dose yield by a factor of 5 with the same amount of RF power?

 $- D \sim I^* E^{2.7-3.0} P_{RF} = E^2/Z + E^*I$

- First increase beam current
 Longer linac = more current
- Second increase beam energy
 Higher energy = higher dose yied

Linac	FLEX	FLASH Demo	FLASH Clinical
Structure	TW const. impedance	SW on-axis coupled	TW const. gradient
Frequency, MHz	2856	2856	1300
Length, m	0.85	2.6	~4.5
RF power	5 MW klystror	n @ 0.4% duty	10 MW @ 4% duty
Beam energy, MeV	2-9	18.0	18
Beam current, mA	100-500	130	325
Expected dose @ 1 m, Gy/sec	4.4	$\textbf{17.5}\pm\textbf{2.0}$	271

Thank you!

Please, come to poster MOPORI009 today