### Electron Ion Collider Strong Hadron Cooling Injector and ERL

Erdong Wang on behalf of SHC BNL/JLab design Team

#### Brookhaven National Laboratory

International Linear Accelerator Conference 2022 Aug. 28<sup>th</sup>-Sep. 2<sup>nd</sup> 2022

#### **Electron-Ion Collider**



Jefferson Lab



### Outline

- EIC overview
- Strong hadron cooling introduction
- Strong hadron cooling accelerator design
  - SHC Injector and Linac
  - Cooling section
  - Beam noise
  - ERL design
  - Proposed SHC+precooler design: injector and Linac

2

Summary

# **EIC Introduction**

#### • Science goals

- How does the mass of the nucleon arise?
- How does the spin of the nucleon arise?
- What are the emergent properties of dense systems of gluons?

#### • EIC Design Goals

- High luminosity: L=(0.1-1)x10<sup>34</sup> cm<sup>-2</sup> s<sup>-1</sup> → 10-100 fb<sup>-1</sup>
- Collisions of highly polarized +/-70% e, p and light ion beams with flexible spin patterns
- $\circ$  Large range of center of mass energies: E<sub>cm</sub>=(20-140) GeV
- o Large range of ion species: protons-Uranium
- o Ensure accommodation of a second IR
- o Large detector acceptance
- o Good background conditions



# **EIC Accelerators**

Design based on existing RHIC, RHIC is well maintained, operating at its peak

- •Hadron storage ring 40-275 GeV (existing)
  - •RHIC Yellow(Blue) Ring
  - •Many bunches, 1160 @ 1A beam current
  - •Bright beam emittance
  - •Strong hadron cooling (new)
- •Electron storage ring (2.5–18 GeV, new)
  - •Many bunches,
  - •Large beam current (2.5 A) 10 MW S.R. power
  - •s.c. RF cavities
- •Electron rapid cycling synchrotron (new)
  - High charge polarized pre-injector
  - •Spin transparent due to high periodicity





#### **Electron-Ion Collider**

### EIC cooling requirements

- Luminosity of lepton-hadron colliders in the energy range of the EIC benefits strongly (factor  $\approx$  3-10) from cooling the transverse and longitudinal hadron beam emittance.
- Cool the proton beam at 275 GeV,100 GeV ,and 41 GeV.
- IBS longitudinal and transverse(h) growth time is 2-3 hours. The cooling time shall be equal to or less than the diffusion growth time from all sources.
- Must cool the hadron beam normalized rms vertical emittance from 2.5 um(from injector) to 0.3 um in 2 hours.
- The cooling section must fit in the available IR 2 space.



SHC: Strong Hadron Cooling, the cooling technique that provides strong cooling rate at high energies **Precooler**: Cool proton at injection energy(24 GeV ) using electron cooling

5

### SHC: Coherent Electron Cooling (CEC)

Similar to stochastic cooling, tiny fluctuations in the hadron beam distribution (which are associated with larger emittance) are **detected**, **amplified and fed back** to the hadrons thereby reducing the emittance in tiny steps on each turn of the hadron beam

- High bandwidth (small slice size)
- Detector(Modulator), amplifiers and fed back (kicker)

For high energy protons, a large bandwidth(tens of THz) is required:

→ Using an electron beam to detect fluctuations, to amplify and to kick.



The pickup and the kicker are implemented via the Coulomb interaction of the hadrons and electrons,  $\gamma_e = \gamma_h$ . The electron modulated signal has to be amplified.



#### **Electron-Ion Collider**

### SHC schematic layout



- 400-500kV DC gun for 100 mA of beam and 5.6 MV SRF injector
- Dogleg ERL merger
- 149 MeV Superconducting Energy Recovery LINAC
- Electron and hadron overlapped cooling section. FODO cells are used to control ebeam size
- Amplification section with chicanes and triplets for electrons
- Hadron chicane path length matching & R<sub>56</sub> adjust
- Return of electrons to ERL
- Electron beam instrumentation and diagnostics

# Strong Hadron Cooler ERL Specifications

The EIC cooler ERL features unprecedented large beam current and small energy spread. The 1D cooling simulation yields a cooling rate higher than the IBS heating.

| Case                                    | 100 GeV     | <u>275 GeV</u> |
|-----------------------------------------|-------------|----------------|
| Electron Energy (MeV)                   | 55          | 150            |
| Electron Norm. Emit. (x/y) (mm-mrad)    | 2.8 / 2.8   | 2.8/2.8        |
| Repetition rate (MHz)                   | 98.5        | 98.5           |
| Electron Bunch Charge (nC)              | 1           | 1              |
| Electron Peak Current (A)               | 8.5         | 17             |
| Electron Bunch Length (mm, rms)*        | 14          | 7              |
| Electron Fractional Energy Spread       | 10-4        | 10-4           |
| Hor./Vert. Elec. Betas in Modulator (m) | 86.6 / 14.1 | 64/11          |
| Hor./Vert. Electron Betas in Kicker (m) | 49.7 / 10   | 16/2           |
| Modulator Length (m)                    | 55          | 55             |
| Kicker Length (m)                       | 55          | 55             |
| H/V/L Cooling time(hr)                  | 1.3/2.5/1.7 | 0.8/2.1/1.2    |
| * Gaussian bunch assumed                |             |                |

# ERL Longitudinal matching

- Due to the long proton bunches, we need very long electron bunches with very small energy spread.
- We use the 5 cell 591 MHz SRF cavity as the main linac
- At 7 mm rms, the 6 $\sigma$  full bunch length is 30° of RF phase. We have to cancel the RF curvature using third harmonic cavity.
- Take space charge and CSR into account to minimize any energy slew or curvature in the bunch.
- A 14 mm rms bunch is  $60^{\circ}$  so it must be stretched.

  - Need R<sub>56</sub> of 57 cm to stretch 3.5 cm bunch to 7 cm
    For a 55 MeV beam, need 7.9 MeV in de-chirper at 591 MHz to take out the slope
- The return beam has to be chirped and compressed before back to the Linac



**Electron-Ion Collider** 

# e-beam quality before entering cooling section



Injector and Linac up to cooling section are simulated by advanced 3D space charge code GPT 3.4.

**Electron-Ion Collider** 

### Full number particles simulation



- Beam noise is extremely important for the SHC. Only allow 2x Possion noise.
- IMPACT simulation: energy spread, emittance, and bunch length are well matched to GPT results.
- Using the full number of particles can study the beam noise at the cooling entrance.
- Observed 280 um noise.

Relative Current Fluctuation (I<sub>d</sub>-I<sub>fit</sub>)/I<sub>fit</sub>



### Shot noise simulation



• Observed > 280 um modulation;

- Noise amplitude is 2x shot noise.
- Cooling frequency bandwidth is 40 THz(3 um), which is far away from 280 um.
- The rest noise is at the same level as the shot noise
- Should not affect cooling performance

**Electron-Ion Collider** 

RMS Fluc analytical ~ 7.3e-4

### **Energy recovery lattice**



1<sup>st</sup> and 2<sup>nd</sup> passes of the electron beam matched transversely in the Linac section using BMAD.

### Cooling section lattice



- Cooling section includes 55 m of modulator(M), 100 m of amplification and 55 m kicker (k).
- FODO cells are used for K and M section, the beta function can be tuned from 2.5 to 50 m for K and 11 to 85 for M.

15

- Triplets are used for the amplification section; the beta function is 1-2 meters.
- (-+)R56 tunable chicanes are designed for amplification section.
- Total R56 from M to K has to be zero

### ERL optics: closed lattice



**Electron-Ion Collider** 

# New design: SHC+pre-cooler injector and Linac



- Precooler bunch charge is 2 nC for  $10^{-4}$  dp/p, 197 MHz cavities will be needed.
- SHC takes advantage of using 197 MHz and compresses the beam at 14 MeV using chicane.
- The chicane has four dipoles for 14 MeV beam and other three dipoles for high energy return beam. They have the same time of flight.

17

• Using 591 MHz+1774 MHz cavity to accelerate beam to the cooling energy.

### e-beam quality evaluation





|                      | SHC only        | SHC+ precooler  |  |
|----------------------|-----------------|-----------------|--|
| Bunch charge         | 1 nC            |                 |  |
| Energy               | 150             |                 |  |
| RMS emittance<br>x/y | 3.1/2.8 mm-mrad | 2.4/2.5 mm-mrad |  |
| rms dp/p             | 1.1e-4          | 4e-5            |  |
| Slice dp/p           | 5.3e-5          | 2e-5            |  |
| rms Bunch length     | 6.9 mm          | 7 mm            |  |





### **ERL Challenges**



- Low noise electron beam
- High current ERL
- > Beam halo
- ► BBU
- Ion trapping
- High current high charge electron source (EIC R&D)
- Beam diagnostics: beam noise, beam halo, e-h alignment (~250 nm), energy spread measurement(<1e-4).

### Summary

- SHC will boost EIC luminosity by factor of 3-10.
- The Strong hadron cooler will establish a major advance in accelerator science and technology.
- SHC needs a high-quality electron beam with high current, small energy spread, and small noise in the beam. It requires development of an ERL with parameters beyond the state of the art.
- A SHC baseline design has been developed that meets the beam requirements for the SHC.
- A SHC and precooler hybrid ERL has been proposed. ERL design is in progress.
- The ERL challenges have been evaluated and are being addressed with our detailed design and R&D.

### Acknowledgements

BNL: W. Bergan, M. Blaskiewicz, D. Holmes, S. Peggs, F. Willeke,
V. Ptitsyn, J. Skaritka, D.Xu, W. Xu, A. Fedotov, D. Kayran
SLAC: G. Stupakov
Jlab: S. Benson, Shaohen Wang, K. Deitrick
Xelera: C. Mayes, D. Douglas, C. Gulliford, N. Taylor

21