



# The CompactLight Design Study (XLS)

#### www.compactlight.eu

Horizon2020 - Work Programme 2016 – 2017 Research & Innovation Action (RIA) INFRADEV-1-2017 Design Studies [01/01/2018 – 31/12/2021]

#### Andrea Latina (CERN)



on behalf of the CompactLight Collaboration









### Highly-compressed electron bunches

as sources of intense X-rays



![](_page_1_Picture_6.jpeg)

![](_page_2_Picture_0.jpeg)

![](_page_2_Picture_2.jpeg)

# E.g., SwissFEL @ PSI

![](_page_2_Picture_4.jpeg)

![](_page_2_Figure_5.jpeg)

![](_page_2_Picture_6.jpeg)

![](_page_3_Picture_0.jpeg)

![](_page_3_Picture_2.jpeg)

## E.g., SwissFEL @ PSI

| Main parameters |             |
|-----------------|-------------|
| Wave length     | 1A -50Å     |
| Photon energy   | 0.25-12 keV |
| Pulse duration  | 1fs - 20fs  |
| e Energy        | 5.8 GeV     |
| e Bunch charge  | 10 - 200 pC |
| Repetition rate | 100 Hz      |

![](_page_3_Picture_5.jpeg)

![](_page_3_Figure_6.jpeg)

![](_page_4_Picture_0.jpeg)

CÉRN

![](_page_4_Picture_2.jpeg)

![](_page_4_Figure_3.jpeg)

C-band acceleration, 28 MV/m gradient The facility has a total length of 740 m

![](_page_5_Picture_0.jpeg)

#### The CERN Compact Linear Collider (CLIC)

![](_page_5_Picture_2.jpeg)

![](_page_5_Figure_3.jpeg)

![](_page_5_Picture_4.jpeg)

![](_page_6_Picture_0.jpeg)

### The CERN Compact Linear Collider (CLIC)

![](_page_6_Picture_2.jpeg)

![](_page_6_Figure_3.jpeg)

![](_page_6_Picture_4.jpeg)

![](_page_7_Picture_0.jpeg)

# The CompactLight Collaboration

![](_page_7_Picture_2.jpeg)

- The XLS Collaboration gathered 26 International Laboratories with the aim to promote the design and construction of the next generation FEL-based photon sources, with innovative accelerator technologies
- The objective is the design of a 5.5 GeV X-band linac, based on the CLIC technology, to drive a FEL facility with soft and hard X-ray options

![](_page_7_Picture_5.jpeg)

![](_page_7_Figure_6.jpeg)

Our aim is to facilitate the widespread development of X-ray FEL facilities across Europe and beyond, by making them more affordable to construct and operate through an optimum combination of emerging and innovative accelerator technologies.

We made use of the latest concepts for:

- > High brightness electron photoinjectors
- Very high gradient accelerating structures
- Novel short period undulators

![](_page_7_Picture_12.jpeg)

![](_page_8_Picture_0.jpeg)

#### **Collaboration Partners**

![](_page_8_Picture_2.jpeg)

| Р   | articipant                                                                                  | Organisation Name                                                                                 | Country        |  |  |
|-----|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------|--|--|
| 1   | ST (Coord.)                                                                                 | Elettra – Sincrotrone Trieste S.C.p.A.                                                            | Italy          |  |  |
| 2   | CERN                                                                                        | CERN - European Organization for Nuclear Research                                                 | International  |  |  |
| 3   | STFC                                                                                        | Science and Technology Facilities Council – Daresbury Laboratory                                  | United Kingdom |  |  |
| 4   | SINAP                                                                                       | Shanghai Inst. of Applied Physics, Chinese Academy of Sciences                                    | China          |  |  |
| 5   | IASA                                                                                        | Institute of Accelerating Systems and Applications                                                | Greece         |  |  |
| 6   | UU                                                                                          | Uppsala Universitet                                                                               | Sweden         |  |  |
| 7   | UoM                                                                                         | The University of Melbourne                                                                       | Australia      |  |  |
| 8   | ANSTO                                                                                       | Australian Nuclear Science and Tecnology Organisation                                             | Australia      |  |  |
| 9   | UA-IAT                                                                                      | Ankara University Institute of Accelerator Technologies                                           | Turkey         |  |  |
| 10  | ULANC                                                                                       | Lancaster University                                                                              | United Kingdom |  |  |
| 11  | VDL ETG                                                                                     | VDL Enabling Technology Group Eindhoven BV                                                        | Netherlands    |  |  |
| 12  | TU/e                                                                                        | Technische Universiteit Eindhoven                                                                 | Netherlands    |  |  |
| 13  | INFN                                                                                        | INFN Istituto Nazionale di Fisica Nucleare                                                        |                |  |  |
| 14  | Kyma                                                                                        | Kyma S.r.l.                                                                                       | Italy          |  |  |
| 15  | SAPIENZA                                                                                    | University of Rome "La Sapienza"                                                                  | Italy          |  |  |
| 16  | ENEA Agenzia Naz. per le Nuove Tecnologie, l'Energia e lo Sviluppo<br>Economico Sostenibile |                                                                                                   | Italy          |  |  |
| 17  | ALBA-CELLS                                                                                  | LBA-CELLS Consorcio para la Construccion Equipamiento y Explotacion del Lab.<br>de Luz Sincrotron |                |  |  |
| 18  | CNRS                                                                                        | Centre National de la Recherche Scientifique CNRS                                                 | France         |  |  |
| 19  | КІТ                                                                                         | Karlsruher Instritut für Technologie                                                              | Germany        |  |  |
| 20  | PSI                                                                                         | Paul Scherrer Institut PSI                                                                        | Switzerland    |  |  |
| 21  | CSIC                                                                                        | Agencia Estatal Consejo Superior de Investigaciones Científicias                                  | Spain          |  |  |
| 22  | UH/HIP                                                                                      | University of Helsinki - Helsinki Institute of Physics                                            | Finland        |  |  |
| 23  | VU                                                                                          | VU University Amsterdam                                                                           | Netherlands    |  |  |
| 24  | USTR                                                                                        | University of Strathclyde                                                                         | United Kingdom |  |  |
| 25  | UniTov                                                                                      | University of Tor Vergata                                                                         | Italy          |  |  |
| 26  | USTR Bilfinger Noell GmbH                                                                   |                                                                                                   | Germany        |  |  |
| Tł  | nird Parties                                                                                | Organisation Name                                                                                 | Country        |  |  |
| AP1 | OSLO                                                                                        | Universitetet i Oslo - University of Oslo                                                         | Norway         |  |  |
| AP2 | ARCNL                                                                                       | Advanced Research Center for Nanolithography                                                      | Netherlands    |  |  |
| AP3 | NTUA                                                                                        | National Technical University of Athens                                                           | Greece         |  |  |
| AP4 | AUEB                                                                                        | Athens University Economics & Business                                                            | Greece         |  |  |
| AP5 | КуТе                                                                                        | Slovenia                                                                                          |                |  |  |

| Italy       | 6              |
|-------------|----------------|
| Netherlands | 3+1 Ass. Part. |
| UK          | 3              |
| Germany     | 2              |
| Spain       | 2              |
| Australia   | 2              |
| China       | 1              |
| Greece      | 1+2 Ass. Part. |
| Sweden      | 1              |
| Turkey      | 1              |
| France      | 1              |
| Switzerland | 1              |
| Finland     | 1              |
| Norway      | 1 Ass. Part.   |
| Slovenia    | 1 Ass. Part.   |
| Internat.   | 1              |

![](_page_8_Picture_5.jpeg)

![](_page_8_Picture_6.jpeg)

![](_page_9_Picture_0.jpeg)

![](_page_9_Picture_2.jpeg)

![](_page_9_Figure_3.jpeg)

![](_page_9_Picture_4.jpeg)

![](_page_9_Picture_5.jpeg)

![](_page_10_Picture_0.jpeg)

![](_page_10_Picture_2.jpeg)

#### Estimated XLS performance compared with other existing facilities

![](_page_10_Figure_4.jpeg)

![](_page_10_Picture_5.jpeg)

![](_page_11_Picture_0.jpeg)

![](_page_11_Picture_2.jpeg)

# The facility design and FEL parameters have been driven by Users' requirements and associated science cases

| Parameter             | Unit | Soft x-ray FEL | Hard x-ray FEL |  |  |
|-----------------------|------|----------------|----------------|--|--|
| Photon energy         | keV  | 0.25 - 2.0     | 2.0 - 16.0     |  |  |
| Wavelength            | nm   | 5.0 - 0.6      | 0.6 - 0.08     |  |  |
| Repetition rate       | Hz   | 100 to 1000    | 100            |  |  |
| Pulse duration        | fs   | 0.1 - 50       |                |  |  |
| Pulse energy          | mJ   | < 0.3          |                |  |  |
| Polarization          |      | Variable -     | Selectable     |  |  |
| Two-pulse delay       | fs   | ± 100          |                |  |  |
| Two-colour separation | %    | 20 10          |                |  |  |
| Synchronization       | fs   | < 10           |                |  |  |

- Repetition rate up to 1 kHz
- > Two-colour operation
- > Simultaneous HXR/SXR operation

These will be unique and highly desirable features of XLS design

![](_page_11_Picture_9.jpeg)

![](_page_12_Picture_0.jpeg)

![](_page_12_Picture_2.jpeg)

#### Main electron beam and FEL parameters

| Parameter                        | Value                                                            |
|----------------------------------|------------------------------------------------------------------|
| Max energy                       | 5.5 GeV @100 Hz                                                  |
| Peak current                     | 5 kA                                                             |
| Normalised emittance             | 0.2 mm.mrad                                                      |
| Bunch charge                     | < 100 pC                                                         |
| RMS slice energy spread          | $10^{-4}$                                                        |
| Max photon energy                | 16 keV                                                           |
| FEL tuning range at fixed energy | ×2                                                               |
| Peak spectral brightness @16 keV | 10 <sup>33</sup> ph/s/mm <sup>2</sup> /mrad <sup>2</sup> /0.1%bw |

|                                             | Parameter              | Unit | Dual | mode | Dual s | source |
|---------------------------------------------|------------------------|------|------|------|--------|--------|
| Two-bunch train                             | Operating Mode         |      | В    |      | U1, U2 |        |
|                                             | Repetition rate        | kHz  | 0.1  | 0.25 | 0.1    | 1      |
| RF operational scenarios:                   | Linac active length    | m    |      | 9    | 4      |        |
| <ul> <li>B: dual mode (Baseline)</li> </ul> | Number of structures   |      |      | 1(   | )4     |        |
| > U1, U2: dual source (Upgrade 1 & 2)       | Number of modules      |      | 26   |      |        |        |
|                                             | Number of klystrons    |      | 2    | 6    | 26 -   | + 26   |
|                                             | Peak acc. gradient     | MV/m | 65   | 32   | 65     | 30.4   |
|                                             | Energy gain per module | MeV  | 234  | 115  | 234    | 109    |
|                                             | Max. energy gain       | MeV  | 6084 | 2990 | 6084   | 2834   |

![](_page_12_Picture_6.jpeg)

![](_page_13_Picture_0.jpeg)

Linac baseline

![](_page_13_Picture_2.jpeg)

![](_page_13_Figure_3.jpeg)

![](_page_13_Picture_4.jpeg)

![](_page_14_Figure_0.jpeg)

![](_page_14_Picture_2.jpeg)

![](_page_14_Figure_3.jpeg)

CERN

Linac2022

A. Latina 15

![](_page_15_Picture_0.jpeg)

![](_page_15_Picture_2.jpeg)

| Parameter                     | Unit    | After VB and/or BC-1 |
|-------------------------------|---------|----------------------|
| Charge Q                      | рС      | 75                   |
| Beam energy                   | MeV     | 300                  |
| RMS Bunch Duration $\sigma_t$ | fs      | 350                  |
| Peak Current                  | Α       | 60                   |
| RMS Energy Spread             | %       | 0.5                  |
| Projected RMS Norm. Emittance | $\mu$ m | 0.2                  |
| Repetition Rate               | Hz      | 100–1000             |

![](_page_15_Figure_4.jpeg)

![](_page_15_Picture_5.jpeg)

![](_page_16_Picture_0.jpeg)

#### **Injector and Linac Beam Dynamics**

![](_page_16_Picture_2.jpeg)

![](_page_16_Figure_3.jpeg)

![](_page_17_Picture_0.jpeg)

![](_page_17_Picture_2.jpeg)

#### Higher-harmonic linearizer

Longitudinal phase space linearization can be achieved using a linearizer

$$V_{\rm lin} = \frac{1}{h^2} V_{\rm main} \cos(\phi_{\rm main})$$

We chose *h*=6, 36 GHz RF

Average iris aperture <a> = 2 mm

| Parameter                              | Value         | Units                   |
|----------------------------------------|---------------|-------------------------|
| Active length /                        | 300           | mm                      |
| Phase advance $\phi$                   | 2 <i>π</i> /3 | rad                     |
| Number of cells                        | 108           | _                       |
| Filling time $	au$                     | 8.4           | ns                      |
| Frequency f                            | 36            | GHz                     |
| Compressed power P                     | 15            | MW                      |
| Design gradient <i>E<sub>acc</sub></i> | 42.5          | MV/m                    |
| Peak surface field $E_p$               | 109.2         | MV/m                    |
| Peak surface field $B_p$               | 189.1         | mT                      |
| Modified Poynting vector $S_c$         | 4.84          | W/ $\mu$ m <sup>2</sup> |

![](_page_17_Figure_8.jpeg)

![](_page_17_Figure_9.jpeg)

![](_page_17_Figure_10.jpeg)

![](_page_17_Figure_11.jpeg)

Gyro-klystron

Multi-beam klystron

CERN

![](_page_18_Picture_0.jpeg)

![](_page_18_Picture_2.jpeg)

# Pulse splitting options for a simultaneous operation HXR/SXR

![](_page_18_Figure_4.jpeg)

![](_page_18_Picture_5.jpeg)

![](_page_19_Picture_0.jpeg)

![](_page_19_Picture_2.jpeg)

RF system parameter and layouts done for 100 Hz baseline, 100/250 Hz dual mode and 100/1000 Hz dual klystron

![](_page_19_Figure_4.jpeg)

|                                        | 100 | 250  | 1000 |
|----------------------------------------|-----|------|------|
| Average gradient <g> [MV/m]</g>        | 65  | 32   | 30.4 |
| Max klystron available out. power [MW] | 50  | 50   | 10   |
| Req. klystron power per module [MW]    | 39  | 42.5 | 8.5  |
| RF pulse length [µs]                   | 1.5 | 0.15 | 1.5  |
| SLED                                   | ON  | OFF  | ON   |
| Av. diss. power per structure [kW]     | 1   | 0.31 | 2.2  |
| Peak input power per structure [MW]    | 68  | 10.6 | 14.8 |
| Av. Input power per structure [MW]     | 44  | 10.6 | 9.6  |
| Module energy gain [MeV]               | 234 | 115  | 109  |

| Parameter                                  | Value   |
|--------------------------------------------|---------|
| Frequency [GHz]                            | 11.9942 |
| Phase advance per cell [rad]               | 2π/3    |
| Shunt impedance R [MΩ/m]                   | 90-131  |
| Effective shunt Imp. $R_s$ [M $\Omega$ /m] | 387     |
| Group velocity v <sub>g</sub> [%]          | 4.7-1.0 |
| P <sub>out</sub> /P <sub>in</sub>          | 0.215   |
| Filling time [ns]                          | 144     |
| Number of cells per structure              | 108     |
| Unloaded SLED Q-factor Q <sub>0</sub>      | 180000  |
| External SLED Q-factor Q <sub>E</sub>      | 23000   |
| # structures per module N <sub>m</sub>     | 4       |
| Module active length L <sub>mod</sub> [m]  | 3.6     |
| Average iris radius <a></a>                | 3.5     |
| Iris radius input-output [mm]              | 4.3-2.7 |
| Structure length L <sub>s</sub> [m]        | 0.9     |

![](_page_19_Picture_7.jpeg)

![](_page_20_Picture_0.jpeg)

![](_page_20_Picture_2.jpeg)

![](_page_20_Figure_3.jpeg)

![](_page_20_Picture_4.jpeg)

![](_page_21_Picture_0.jpeg)

![](_page_21_Picture_2.jpeg)

Beam performance under the effects of misalignments: 100  $\mu$ m rms 200  $\mu$ rad rms, all elements. Average of 100 random configurations.

![](_page_21_Figure_4.jpeg)

![](_page_21_Picture_5.jpeg)

![](_page_22_Picture_0.jpeg)

![](_page_22_Picture_2.jpeg)

![](_page_22_Figure_3.jpeg)

![](_page_22_Picture_4.jpeg)

![](_page_23_Picture_0.jpeg)

![](_page_23_Picture_2.jpeg)

![](_page_23_Figure_3.jpeg)

Both undulator lines have identical parameters, so K is tuneable to provide a factor of 2 wavelength tuning for both Soft X-ray and Hard X-ray

λ<sub>u</sub>≈13mm

K<sub>u</sub>≈0.85-1.85

- Soft X-ray E<sub>beam</sub> ≈ 1.0 / 1.4 / 1.95GeV (~3 discrete working points @increased rep.rate, TBC)
- Hard X-ray
   E<sub>beam</sub> ≈ 2.75 / 3.9 / 5.5GeV
   (~3 discrete working points @100Hz)

![](_page_23_Picture_9.jpeg)

![](_page_24_Picture_0.jpeg)

![](_page_24_Picture_2.jpeg)

Both Soft and Hard X-Ray configurations foresee a SASE line based on Helical Super-Conductive Undulator plus an Afterburner line based on Apple-X undulators

| SC helical undularor                | Value | Unit |
|-------------------------------------|-------|------|
| Period length                       | 13    | mm   |
| Length (including matching periods) | 1.755 | mm   |
| Magnetic gap                        | 4.2   | mm   |
| Beam pipe bore diameter             | 3     | mm   |
| a <sub>w</sub> (8 keV)              | 1.33  |      |
| a <sub>w</sub> (16 keV)             | 0.617 |      |
| Bmax on axis                        | 1.09  | Т    |

![](_page_24_Picture_5.jpeg)

Winding trials ongoing at RAL on a 30 cm model, 13 mm period

Courtesy of B. Shepherd (STFC)

![](_page_24_Picture_8.jpeg)

![](_page_25_Picture_0.jpeg)

![](_page_25_Picture_2.jpeg)

#### **Operating modes**

| Operating<br>mode                                    | FEL1<br>Wavelength | FEL2<br>Wavelength | L0/L1/L2/L3<br>Rep rate<br>(Hz) | L3<br>Output Energy<br>(GeV) | L4<br>Rep rate<br>(Hz) | L4<br>Output Energy<br>(GeV) |  |
|------------------------------------------------------|--------------------|--------------------|---------------------------------|------------------------------|------------------------|------------------------------|--|
|                                                      | BASELINE           |                    |                                 |                              |                        |                              |  |
| B-HH                                                 | HXR                | HXR                | 100                             | 2.75 – 5.5                   |                        |                              |  |
| B-SS                                                 | SXR                | SXR                | 250                             | 0.97 - 1.95                  |                        |                              |  |
|                                                      |                    |                    | UPGRADE :                       | 1                            |                        |                              |  |
| U1-HH                                                | HXR                | HXR                | 100                             | 2.75 – 5.5                   |                        |                              |  |
| U1-SS                                                | SXR                | SXR                | 1000                            | 0.97 – 1.95                  |                        |                              |  |
| UPGRADE 2 – ALL MODES FROM UPGRADE 1 PLUS EXTRA MODE |                    |                    |                                 |                              |                        |                              |  |
| U2-SH                                                | SXR                | HXR                | 100                             | 2.75 - 5.5                   | 100                    | 0.97 – 1.95                  |  |

| Beam Parameters         |         |             |       |             |       |         |            |  |
|-------------------------|---------|-------------|-------|-------------|-------|---------|------------|--|
| Parameter               | Unit    | Hard X-rays |       | Soft X-rays |       |         |            |  |
| Beam Energy             | GeV     | 5,5         | 3,9   | 2,75        | 1,95  | 1,37    | 0,97       |  |
| Photon Energy Range     | keV     | 16 - 8      | 8 - 4 | 4 - 2       | 2 - 1 | 1 - 0.5 | 0.5 - 0.25 |  |
| Minimum Peak Current *  | kA      | 5.0         | 2.5   | 1.5         | 0.925 | 0.65    | 0.35       |  |
| RMS Slice Energy Spread | %       | 0.01        | 0.014 | 0.02        | 0.028 | 0.04    | 0.056      |  |
| Normalised Emittance    | mm-mrad | 0.2         |       |             |       |         |            |  |
| Bunch Charge            | pC      | 75          |       |             |       |         |            |  |

![](_page_25_Picture_6.jpeg)

![](_page_26_Picture_0.jpeg)

![](_page_26_Picture_2.jpeg)

![](_page_26_Figure_3.jpeg)

![](_page_26_Picture_4.jpeg)

![](_page_27_Picture_0.jpeg)

![](_page_27_Picture_2.jpeg)

CompactLight has been conceived as an accelerator toolbox

- Hi-rep. rate C-band injector
- X-band Linac module
- Ka-band linearizer
- Undulators

We studied two cases

- Inverse-Compton Scattering source (ICS)
- Short soft X-ray FEL facility

![](_page_27_Picture_11.jpeg)

![](_page_28_Picture_0.jpeg)

![](_page_28_Picture_2.jpeg)

![](_page_28_Figure_3.jpeg)

| Parameter            | Symbol                                                  | CompactLight         | Unit              |
|----------------------|---------------------------------------------------------|----------------------|-------------------|
| Electron beam energy | $E_e$                                                   | 100                  | MeV               |
| Collision frequency  | $f_{ m eff}$                                            | 50,000               | $\mathrm{s}^{-1}$ |
| Bunch charge         | Q                                                       | 200                  | pC                |
| Rel. energy spread   | $\sigma_e/E_e$                                          | 5                    | %                 |
| Norm. emittance      | $\epsilon_x/\epsilon_y$                                 | 0.35/0.39            | mm mrad           |
| Electron spot size   | $\sigma_{e,x}^* / \sigma_{e,y}^*$                       | 5.56/12.34           | μm                |
| Laser pulse energy   | $E_p$                                                   | 50                   | mJ                |
| Laser spot size      | $\sigma_{\text{laser},x}^* / \sigma_{\text{laser},y}^*$ | 4.71/4.71            | μm                |
| Crossing angle       | $\phi$                                                  | 2                    | 0                 |
| Source size          | $\sigma^*_{X-ray,x}/\sigma^*_{X-ray,y}$                 | 3.59/4.40            | μm                |
| Total flux           | $\dot{N}_{\gamma}$                                      | $8.62	imes10^{11}$   | ph/s              |
| Average brilliance   | B                                                       | $1.85 	imes 10^{14}$ | 1                 |

 $\frac{1}{1}$  ph/(s mm<sup>2</sup> mrad<sup>2</sup> 0.1%BW).

A High-Energy and High-Intensity Inverse Compton Scattering Source Based on CompactLight Technology MDPI Photonics, April 2022, <u>https://www.mdpi.com/2304-6732/9/5/308</u>

![](_page_28_Picture_7.jpeg)

![](_page_29_Picture_0.jpeg)

![](_page_29_Picture_2.jpeg)

![](_page_29_Figure_3.jpeg)

A High-Energy and High-Intensity Inverse Compton Scattering Source Based on CompactLight Technology MDPI Photonics, April 2022, <u>https://www.mdpi.com/2304-6732/9/5/308</u>

![](_page_29_Picture_5.jpeg)

![](_page_30_Picture_0.jpeg)

![](_page_30_Picture_2.jpeg)

![](_page_30_Figure_3.jpeg)

![](_page_30_Picture_4.jpeg)

Breast CT imaging (early detection of breast cancer)

Typical X-ray energy range: 30-40 keV Field of view (hor x vert.): ~ 15-20 cm x 15 cm Flux requirements @ pat. position: at least  $5x10^7$  ph/mm<sup>2</sup>/s

Lung CT imaging (early detection of lung cancer, lung fibrosis)

Typical X-ray energy range: 60-70 keV

Field of view (hor x vert.): ~ 50 cm x 50 cm or ~15-20 cm x 15cm (local area, single lobe)

**Imaging of small animals** (studies of animal models mimicking human diseases) Typical X-ray energy range: 15-30 keV Field of view (hor x vert.): ~3-15 cm x 10-20 cm

High resolution Imaging of tissues and organs (in-vitro imaging)

Typical X-ray energy range: 10-30 keV (also pink beam) Field of view (hor x vert.):  $\sim$  1-3 cm x 0.5 cm

Courtesy of G. Tromba (Elettra)

![](_page_30_Picture_14.jpeg)

![](_page_30_Picture_15.jpeg)

![](_page_31_Picture_0.jpeg)

![](_page_31_Picture_2.jpeg)

✓ CompactLight published its Conceptual Design Report in early 2022:

https://zenodo.org/record/6375645

- ✓ We are part of Horizon Europe I.FAST project
  - Manufacturing two CompactLight X-band structures
- ✓ Collaboration will continue:
  - ✓ Periodic meetings
  - ✓ Development of high repetition rate X-band power sources
  - ✓ Design of an Inverse-Compton Scattering source and compact FEL

![](_page_31_Picture_11.jpeg)

![](_page_32_Picture_0.jpeg)

![](_page_32_Picture_2.jpeg)

- CompactLight offers advanced and challenging FEL schemes with a wide range of operating modes, using affordable, efficient, compact technology:
  - ✓ Simultaneous operation of HXR and SXR at 100 Hz
  - ✓ C-band injector, two-bunch operation up to 1 kHz
  - ✓ Compact X-band linac up to 65 MV/m gradient
  - ✓ Ka-band linearizer at 36 GHz
  - Compact super-conductive undulators
- The facility operation up to 1 kHz will pave the way for further applications of the XLS technology
- The application of CompactLight technology offers the possibility to assemble also smaller machines like Inverse-Compton Scatteromg sources with a wide range of applications

![](_page_32_Picture_11.jpeg)

![](_page_33_Picture_0.jpeg)

![](_page_33_Picture_1.jpeg)

![](_page_33_Figure_2.jpeg)

CompactLight is funded by the European Union's Horizon2020 research and innovation programme under Grant Agreement No. 777431.

![](_page_33_Picture_4.jpeg)