







# RELIEF: Tanning of Leather with e-beam WE2AA02

Linac 2022

Rob Apsimon<sup>1</sup>, Dan Turner<sup>1</sup>, Kay Dewhurst<sup>2</sup>, Sadiq Setiniyaz<sup>1</sup>, Rebecca Seviour<sup>3</sup>, Will Wise<sup>4</sup>

<sup>1</sup>Lancaster University and Cockcroft Institute, Lancaster, UK

<sup>2</sup>CERN, Meyrin, Geneva, Switzerland

<sup>3</sup>University of Huddersfield, Huddersfield, UK

<sup>4</sup>Institute for Creative Leather Technologies, University of Northampton, Northampton, UK

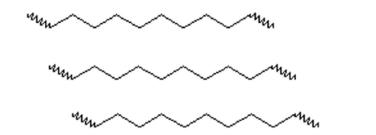




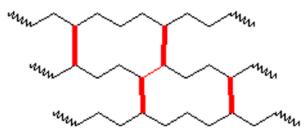




- What is tanning?
- Environmental impact
  - Chromium
  - Wastewater/effluent
- E-beam tanning
  - Concept
  - Benefits
- Simulation results
- Summary and conclusions








- Tanning is a chemical process to modify the physical and chemical properties of hides
  - Prevent biological degradation (putrefaction)
  - Improve durability, tensile strength etc (depends on end user requirements)
- This involves creating branching and/or crosslinking between protein chains
  - This depends on which tanning agents are used.
    - Branching: results in more flexible leather for handbags, jackets etc
    - Crosslinking: stiffer, more durable leather, used for boots and furniture















- Tanning is achieved by adding chemicals to the hides, which bind to the proteins.
  - The chemicals are called tanning agents, tannins or tannages.
- There are three main classes of tanning agents:
  - 80% of the world's leather is produced with chrome (III) sulphate due to the high quality end product.
  - These chemicals can have an acute impact to the local environment if not properly treated and disposed of.



Metal

tannins

Synthetic tannins

Vegetable tannins









- Hides are conventionally tanned in large drums, which can hold up to 500 600 hides and 20 – 40 tons of water and chemicals.
- The process takes 12 36 hours for metal and synthetic tannins
  - Veg tanning can take up to 1 year
- Tanning drums use 150 250 kW of power to mix hides and tanning solution

The mechanical action of turning the drums produces heat, to keep the mixture at ~30°C.

Most large tanneries use conveyor systems to transport hides from one area to the next.

This is a picture of a tannery we visited in Mexico.









- Most common oxidisation states are Cr(III) and Cr(VI)
  - Cr(III) is stable, green in colour and benign as it can't pass through cell membrane.
  - Cr(VI) is less stable, red or orangey-yellow in colour and is hemotoxic, genotoxic and carcinogenic.
    - Small enough to pass through cell membrane, reduces to Cr(III) and tans DNA!
  - Cr(III) can be oxidised to Cr(VI) by sunlight or acidic conditions
- What if chromium wastewater is improperly disposed of in the local environment?
  - Chromium contaminates water supplies
  - Ingested by animals and absorbed by plants within the watershed
  - By contaminating food and water supplies, chromium persists within the local environment.





- How wastewater and effluent is dealt with can vary significantly around the world, depending on factors such as environmental policies, regulation and enforcement.
  - However, regardless of whether wastewater is disposed of in a lake/river, or treated in a specialist effluent treatment plant, there is still an environmental impact to consider.

## Guanajuato, Mexico

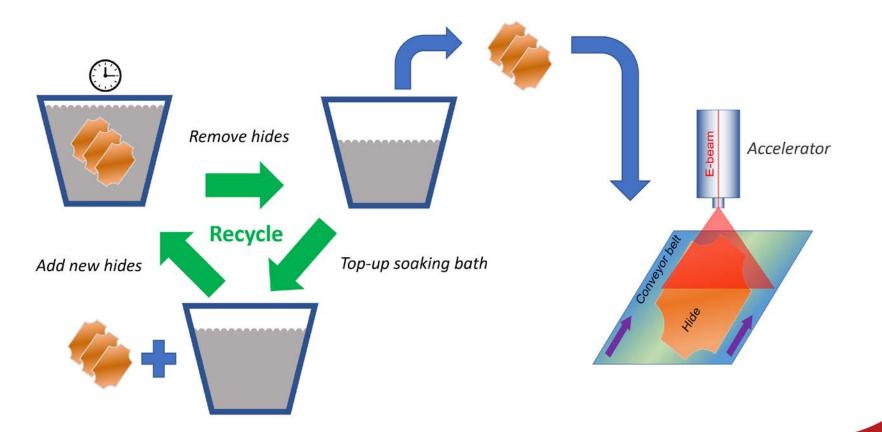


## Water treatment plant








## Environmental impact: wastewater/effluent

- Improper disposal/discharge of effluent
  - This may be discharged into lakes/rivers or a domestic sewage treatment plant
  - Long-term contamination of local food and water supplies
  - Increasing focus on green credentials
  - Enforcement of policies requires resources and will impact leather industry
    - This may have major consequences on economy in lower-income countries.
- Wastewater treatment
  - Removes hazardous chemicals from wastewater that domestic sewage treatment plants can't
  - Energy intensive process with large carbon footprint
  - Significant cost to tanneries (30 50% of total production cost of leather)

### Solution to both problems is to eliminate wastewater production



• Our solution: soak the hides in the required tanning agents, then irradiate with an electron beam to tan the hides











E-beam tanning: concept

- Our process is inspired by the industrial crosslinking of polymers to modify its material properties
  - This is very often achieved with electron beams
  - Instead of polymers, we are modifying proteins



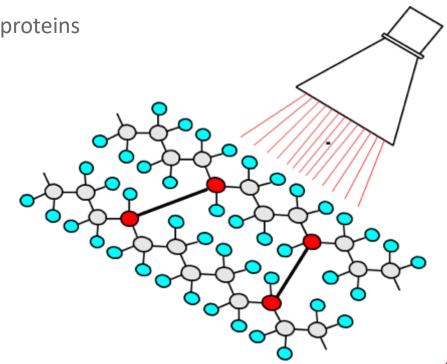



Image source (right image): https://www.miottisrl.com/en/does-the-radox-cable-radiation-cross-linkingprocess-occur/







- Compared to conventional drum tanning, e-beam tanning has the following benefits:
  - ~90% reduction in wastewater production
    - Any drippage pre-irradiation can be recycled
  - Reduction in water (~50%) and energy (~10%) consumption during tanning stages
    - This excludes indirects such as wastewater treatment
  - Turns tanning from a batch process to a continuous process
  - By instantaneously tanning (rather than taking 12 36 hours), novel tanning agents could be used which are too unstable for conventional tanning

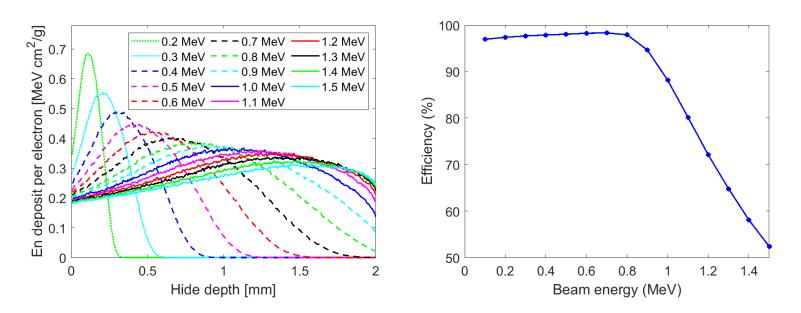






Accelerator requirements

- Conventional tanning:
  - -1 tanning drum tans 500 -600 hides in 12 36 hours (~1 -3 minutes per hide)
  - Requires 20 40 tons of water
  - 150 250 kW of power to run the tanning drums
  - A tanning drum costs ~£100k 250k and will last ~10 years
- E-beam tanning:
  - ~ 0.4 MeV/mm of hide thickness (2 10 mm depending on requirements)
  - Assume 200 kGy required dose, need ~45 kW beam power to tan 1 hide in 90 s
    - For a 2 mm thick hide
  - Accelerator costs >£1M depending on specific requirements
    - E-beam tanning cost effective for medium/large tanneries (>200k hides/year)
  - Need to optimise dose distribution and energy efficiency



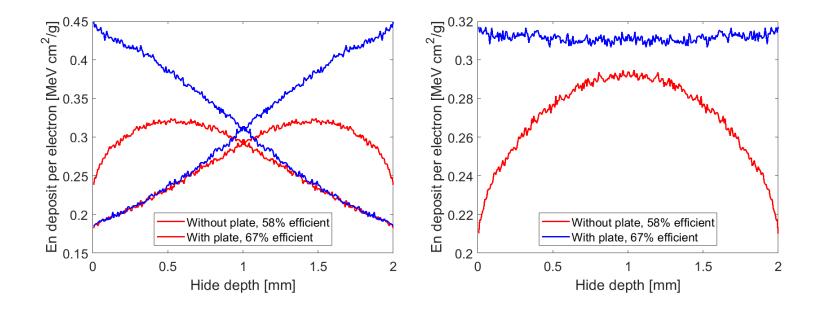







- Soaked bovine hide has a density of ~ 1.5 g/cm<sup>3</sup>
- Figures of merit:
  - Energy deposition efficiency:  $\eta_E = \frac{E_{deposited}}{E_{beam}}$
  - Dose uniformity:  $\frac{\sigma_D}{D_{ave}}$



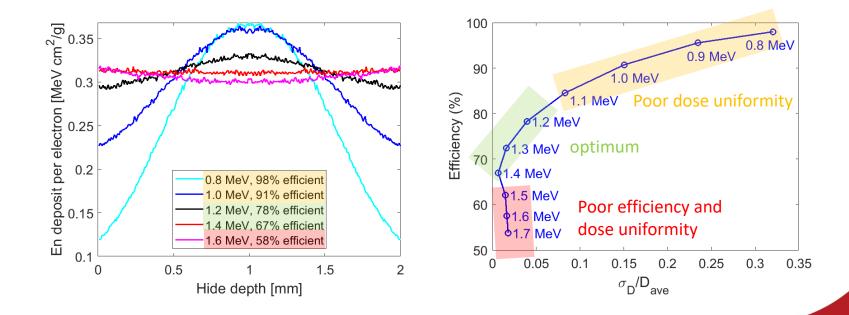







### • Irradiate hide, flip it over an irradiate the other side

- Metal back plate to backscatter electrons that pass through the hide
  - Allows a "second bite of the cherry" increasing both  $\eta_E$  and  $\sigma_D/D_{ave}$
  - The beam energy needs to be tuned to the required hide thickness










- Simulations in G4Beamline allow us to determine the relationship between dose uniformity and energy deposition efficiency.
- In order to provide comparable throughput to conventional tanning, the beam power deposited in the hide must be constant
  - Higher deposition efficiency can result in a 20 30% reduction in beam current





• For different hide thickness, we can optimise the beam energy to ensure a dose uniformity within 1%





- The leather industry has a global turnover of \$250 billion, but has a significant environmental impact due to its resource intensive processes and hazardous effluent produced.
- E-beam tanning is a novel, potentially disruptive technology, which seeks to drastically reduce or eliminate wastewater production.
- Despite relatively high capital costs, higher throughput and lower running costs are expected to outweigh this for medium/large scale tanneries.
- Optimisation of beam parameters can result in high energy deposition efficiency and high dose uniformity.







Thank you! Questions?