Keyword: status
Paper Title Other Keywords Page
MOPOGE14 Current Status of the Spoke Cavity Prototyping for the JAEA-ADS Linac cavity, linac, simulation, SRF 180
 
  • J. Tamura, Y. Kondo, F. Maekawa, S.I. Meigo, B. Yee-Rendón
    JAEA/J-PARC, Tokai-mura, Japan
  • T. Dohmae, E. Kako, H. Sakai, K. Umemori
    KEK, Ibaraki, Japan
 
  The Japan Atomic Energy Agency (JAEA) has proposed an accelerator-driven subcritical system (ADS) to efficiently reduce high-level radioactive waste generated at nuclear power plants. One of the challenging R&D aspects of ADS is the reliability of the accelerator. In preparation for the full-scale design of the CW proton linac for the JAEA-ADS, we are now prototyping a low-beta (around 0.2) single spoke cavity. Since there is no experience in Japan in manufacturing a superconducting spoke cavity, prototyping and performance testing of the cavity is essential to ensure the feasibility of the JAEA-ADS linac. In the Japanese fiscal year 2021, we have started welding cavity parts together. By preliminarily examining the electron beam welding conditions, each press-formed niobium part was joined with a smooth welding bead. The current status of the spoke cavity prototyping for the JAEA-ADS linac is presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-MOPOGE14  
About • Received ※ 01 August 2022 — Revised ※ 21 August 2022 — Accepted ※ 14 September 2022 — Issue date ※ 26 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TU2AA01 Overview of ADS Projects in the World linac, proton, SRF, target 310
 
  • B. Yee-Rendón
    JAEA/J-PARC, Tokai-mura, Japan
 
  Accelerator-driven subcritical systems (ADS) offer an advantageous option for the transmutation of nuclear waste. ADS employs high-intensity proton linear accelerators (linacs) to produce spallation neutrons for a subcritical reactor. Besides the challenges of any megawatt proton machine, ADS accelerator must operate with stringent reliability to avoid thermal stress in the reactor structures. Thus, ADS linacs have adopted a reliability-oriented design to satisfy the operation requirements. This work provides a review and the present status of the ADS linacs in the world.  
video icon
 
  please see instructions how to view/control embeded videos  
slides icon Slides TU2AA01 [2.951 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-TU2AA01  
About • Received ※ 23 August 2022 — Revised ※ 28 August 2022 — Accepted ※ 01 September 2022 — Issue date ※ 14 October 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOJO22 A Ground Experimental Approach Toward Understanding Mysterious Astrophysical Fast Radio Bursts plasma, electron, experiment, FEL 735
 
  • Y. Sumitomo, T. Asai, D. Kobayashi, S. Kumagai, K. Kusaka, Y. Onishi, T. Seki, R. Yanagi
    Nihon University, Tokyo, Japan
  • Y. Hayakawa, T. Sakai
    LEBRA, Funabashi, Japan
  • S. Kisaka
    HU ADSE, Hiroshima, Japan
  • H. Koguchi
    AIST, Tsukuba, Japan
 
  Funding: Nihon University CST Project Research Grant (2021 Apr. ~), Japan Society for the Promotion of Science (JSPS), Grant-in-Aid for Scientific Research (KAKENHI), Grant Number JP19K12631
The Fast Radio Bursts are astrophysical events that get much more attentions increasing year by year, due to their mysterious properties of signals. The major properties of signals include a class of the brightest astrophysical events, short durations of emissions, and larger dispersion measures than the known short duration events. Interestingly, the large values of dispersion measures suggest the existence of abundant plasma around the parent bodies of emissions. To have a better understanding of basic mechanism of the Fast Radio Burst emissions, we initiated a ground-based research project at our 100 MeV electron LINAC facility, in combination with the high-beta plasma generation knowledge matured also at Nihon University, that mimics plasma fields in space. In this presentation, we overview our project and report on the status of the experiment for the induced enhanced emissions from integrated iterative interactions with plasma fields.
 
slides icon Slides THPOJO22 [0.678 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-THPOJO22  
About • Received ※ 12 August 2022 — Revised ※ 21 August 2022 — Accepted ※ 31 August 2022 — Issue date ※ 23 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)