A Ground Experimental Approach Toward Understanding Mysterious Astrophysical Fast Radio Bursts

Yoske Sumitomo¹*, T. Asai¹, S. Kisaka², H. Koguchi³, K. Kusaka¹, R. Yanagi¹, Y. Onishi¹, Y. Hayakawa¹, D. Kobayashi¹, S. Kumagai¹, T. Sakai¹, T. Seki¹ ¹Nihon U., ²Hiroshima U., ³AIST LINAC2022, Liverpool, UK

Motivation: Astrophysical Fast Radio Bursts

- Recent mysterious RF burst signals
 - Discovered initially in 2007, blooming since 2013. [Lorimer et al., Science 318, 777 (2007)], [Thornton et.al., Science 341, 53 (2013)]
 - Recent rapid developments.
- Some characteristics
 - RF short burst signals with milliseconds durations.
 - A class of brightest events ever observed.
 - Some repetitive, but mostly sudden events.
 - Observations suggest the existence of abundant plasma fields around parent bodies.
 - Basic mechanism not yet understood. e.g. [Nature News, Nature 582, 344 (2020)] Difficult to explain in the conventional sense. Need a new idea.

Artist's impression of SGR 1935+2154 $\ensuremath{\mathbb C}$ ESA

A challenge from ground experiments with some keys

- ➤ Key 1: Accelerated relativistic particles are ubiquitous in space.
 - Evidence of existence of PeV accelerations. [Amenomori et al., Phys. Rev. Lett. 126, 141101 (2021)] [Cao et al., Nature 594, 33–36 (2021)]
 - Not difficult to expect high current beams.
- > Key 2: Accelerator knowledge of collective motions may help?
 - We are familiar with some non-linearly enhanced emissions.

From Institute for Molecular Science web

Toward Fast Radio Bursts on ground

- Accelerator side: suitable for relativistic integrated collective interactions (100 MeV, 50k bunches).
- Plasma side: mature experience of plasma generations with the similar property in space.