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Outline

• Processing Superconducting Cavities for High Fields

• Field Emission

• Streamlining Field Emission Testing Terahertz Pulses

• Advanced Accelerator Applications of Terahertz Pulses

• Sub-cycle (Ultrabroadband) Terahertz Pulses
• Generation

• Conventional Detection

• Spatiotemporal Detection

• Spatio-Temporal Effects
• Carrier Phase/Gouy Phase

• Intrinsic Spatial Chirp

• A New Regime of Diffraction
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Improving Gradients via Cavity Processing
• High gradients supported by 

effective cavity processing 
techniques

• Field emission (FE) from cavity 
surface one of major limiting 
factors for accelerating gradient
• FE electrons cause excessive heating 

and x-ray radiation

• Plasma cleaning an effective in situ 
technique for reducing field 
emission
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Plasma cleaning improves 
accelerating field by 
removing contaminants.

Plasma Processing 
of a Cavity

[1] M. Doleans et al. In-situ plasma processing 
to increase the accelerating gradients of 
superconducting radio-frequency cavities 
(2016)
https://doi.org/10.1016/j.nima.2015.12.043

[1]
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Terahertz Field Emission Test Stand - Concept
• Few-THz range well-suited 

for probing on sub-mm 
scales

• THz sources can achieve 
extremely high electric field 
strength (few GV/m)
• Highest available THz fields 

are generated using short-
pulsed lasers

• Enough to induce field 
emission on SRF surfaces

[1] Shalaby, M., Hauri, C. Demonstration of a low-frequency three-dimensional 
terahertz bullet with extreme brightness. Nat Commun 6, 5976 (2015).

[1]
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THz-Based Particle Acceleration – Ions/Protons?

• High peak fields an interesting 
prospect for compact 
acceleration

– Sub-picosecond timing with optical 
pulses

– Submillimeter length scales
– Reduced field emission

• Pulsed THz technology undergoing 
rapid increases in field strength 
and efficiency

• Optical THz technology is 
becoming more reliable and 
accessible

• Little investigation into Ion/proton 
acceleration – how slow a wave is 
possible?

[1] Emilio A. Nanni et al. Terahertz-driven linear electron acceleration
Nature Communications volume 6, Article number: 8486 (2015)

[2] Zhang, D., Fallahi, A., Hemmer, M. et al. Segmented terahertz electron accelerator and manipulator (STEAM). 
Nature Photon 12, 336–342 (2018). ISSN 1749-4893 

[2]

“THz Accelerator And Manipulator”

[1]

[1]

THz Pulse 
Electric Field
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Optical Rectification of Ultrashort Laser Pulses

• Nonlinear response of THz 
generating crystals produces 
quasi-static polarization

• Polarization locally radiates 
electromagnetic pulse up to 
THz frequencies

• Collection of polarization 
sites acts like phased 
antenna array, producing 
directed THz pulsed beam

• THz frequencies can be 
propagated in free space 
and focused onto target
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2+1D Electro-optic Sampling[1]

• THz electric field changes 
polarization of ultrashort probe
– The change in polarization of an 

ultrashort probe depending on its 
timing within the THz field
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[1] G. A. Hine and M. Doleans
Phys. Rev. A 104, 032229 – Published 30 September 2021
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Interpreting Results
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• Full spatiotemporal profile 
has 2-transverse and 1-
temporal dimension. 

• Transverse slices reveal 
spatio-temporal/spectral 
correlations

• Provides a complete 
characterization of the 
pulse according to 
Huygens principle

• Can be easily 
propagated according 
to the wave equation

Full 2+1D Profile

THz Spatio-spectrum
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Focusing of Ultrabroadband Light

• Build spatio-spectrum from an 
(uncorrelated) spectrum
– Gaussian profiles with flat phase fronts
– Spot size inversely proportional to 

frequency
– Total energy in each frequency 

matches overall energy spectrum
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Transformation of an Uncorrelated Sub-cycle Pulse
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• Transport of THz pulsed 
beams complicated by 
spatio-temporal 
propagation effects

• Initially uncorrelated 
pulsed beam develops 
spatio-temporal 
correlations when 
focused or allowed to 
propagate long 
distances

• Carrier envelope phase 
(CEP) sensitive to 
focusing and transport 
conditions. 

– Sine-like and cosine-like 
pulsed beams can be 
produced
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Transformation of an Uncorrelated Sub-cycle Pulse
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Formation of Optical Vortices from Stepped Optics

• Spatio-temporal effects 
of refraction – phase 
shear by group delay
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cause robust amplitude 
nulls
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Summary/Questions

• THz pulses with large electric fields could have various applications for 

current and future accelerator technology

• Subcycle (ultrabroadband) terahertz pulses exhibit complex and 

sometimes exotic behavior even with ordinary circumstances

• Spatiotemporal measurements of THz pulses are a powerful 

characterization tool, providing significantly more complete information 

than conventional (temporal) methods




