Keyword: ISOL
Paper Title Other Keywords Page
TUPOJO02 Multi-Harmonic Buncher (MHB) Studies for Protons and Ions in ESS-Bilbao bunching, proton, rfq, simulation 334
 
  • J.L. Muñoz, I. Bustinduy, P.J. González, L.C. Medina
    ESS Bilbao, Zamudio, Spain
 
  Multi-harmonic buncher cavities (MHB) are used in ion linacs to increase the bunch separation so the beam can be injected in rings or used in applications like time-of-flight experiments. The ideal saw-tooth electric field profile of the buncher is achieved in practice by adding several components of its Fourier expansion (multi-harmonics). ESS-Bilbao will develop* a MHB intended to be tested in the CERN-ISOLDE facility. The design and prototyping include the buncher device itself as well as the solid-state power amplifier (SSPA) to power it. The buncher design (finite elements and beam dynamics) has been carried out to optimize it for ISOLDE beams and frequencies of 1/10th of the radio-frequency quadrupole (RFQ) frequency. The testing of the cavity at ESS-Bilbao proton beam injector (before the RFQ) has also been studied.
* In the framework of the "Agreement for the Spanish Contribution to the Upgrade of the ATLAS, CMS, and LHCb Experiments and the new Projects for ISOLDE and nTOF"
 
poster icon Poster TUPOJO02 [0.802 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-TUPOJO02  
About • Received ※ 22 August 2022 — Revised ※ 29 August 2022 — Accepted ※ 04 September 2022 — Issue date ※ 15 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOGE08 Design of a Transport System for the PIP-II HB650 Cryomodule cryomodule, simulation, acceleration, operation 498
 
  • M.T.W. Kane
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • J.P. Holzbauer
    Fermilab, Batavia, Illinois, USA
  • T.J. Jones, E.S. Jordan
    STFC/DL, Daresbury, Warrington, Cheshire, United Kingdom
 
  The PIP-II Project at FNAL requires the assembly of 3 high-beta 650MHz cryomodules at STFC Daresbury (DL) in the UK. These modules must be safely transported from DL to FNAL in the USA. Previous experience with cryomodule transport was leveraged at both labs to design a transport system to protect the cryomodules during transit. Requirements for the system included mitigation of shocks, drops, and vibrations, and acting as a lifting fixture. It is comprised of a tessellated steel frame which encompasses the module with a wire rope isolator arrangement which the module mounts to. The frame was designed to withstand the weight of the 12.5 tonne cryomodule in various load cases. Details of shock and vibration profiles were obtained from MIL-STD-810H and were used to guide the sizing of the isolators. The frame and the isolation system were analysed via FEA using the shock and vibration profiles as an input. The transport system was found to be suitable for the given isolation, frame stiffness, and lifting code requirements. The frame has been fabricated and successfully load tested at FNAL. It will now be road tested with a dummy cryomodule before undergoing a trial run to DL.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-TUPOGE08  
About • Received ※ 24 August 2022 — Revised ※ 29 August 2022 — Accepted ※ 31 August 2022 — Issue date ※ 02 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOGE15 Prototype HB650 Transportation Validation for the PIP-II Project cryomodule, interface, resonance, linac 523
 
  • J.P. Holzbauer, S. Cheban, C.J. Grimm, J. Helsper, R. Thiede, A.D. Wixson
    Fermilab, Batavia, Illinois, USA
  • R. Cubizolles
    CEA-IRFU, Gif-sur-Yvette, France
  • M.T.W. Kane
    STFC/DL, Daresbury, Warrington, Cheshire, United Kingdom
 
  Funding: Work supported by the Fermi National Accelerator Laboratory, managed and operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy.
The PIP-II Project at Fermilab is centered around a superconducting 800 MeV proton linac to upgrade and modernize the Fermilab accelerator complex, allowing increased beam current to intensity frontier experiments such as LBNF-DUNE. PIP-II includes strong international collaborations, including the delivery of 12 cryomodules from European labs to FNAL (3 from STFC-UKRI in the UK and 9 from CEA in France). The transatlantic shipment of these completed modules is identified as a serious risk for the project. To mitigate this risk, a rigorous and systematic process has been developed to design and validate a transport system, including specification, procedures, logistics, and realistic testing. This paper will detail the engineering process used to manage this effort across the collaboration and the results of the first major validation testing of the integrated shipping system prior to use with a cryomodule.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-TUPOGE15  
About • Received ※ 13 August 2022 — Revised ※ 19 August 2022 — Accepted ※ 30 August 2022 — Issue date ※ 15 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOGE09 Split Thin Film SRF 6 GHz Cavities cavity, niobium, SRF, cryogenics 814
 
  • B.S. Sian, G. Burt, D.J. Seal
    Lancaster University, Lancaster, United Kingdom
  • G. Burt, O.B. Malyshev, D.J. Seal, R. Valizadeh
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • O.B. Malyshev, R. Valizadeh
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • H.S. Marks
    Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
 
  Many current accelerators use cavities that are manufactured as two half cells that are electron beam welded together, the weld is across the peak surface current of the cavity. This weld can lead to large increases in surface resistance and limit the performance of thin film coated cavities. Many problems with the coating process for thin film Superconducting Radio Frequency (SRF) cavities are also due to this weld. Thin film SRF cavities can perform as well as bulk niobium cavities if the cavity is manufactured seamlessly, without any weld, as they have a more uniform surface, however, they are much more difficult and expensive to manufacture. A cavity with a split longitudinally, parallel to the direction of the electric field, would not need to be welded. These seamless cavities are easier to manufacture and coat. This opens the possibilities to coat with new materials and multilayer coatings. These cavities may allow SRF cavities to operate at significantly better parameters (higher quality factor and maximum accelerating field) than current state of the art cavities. This work discusses development and testing of longitudinally split seamless cavities at Daresbury Laboratory.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-THPOGE09  
About • Received ※ 25 August 2022 — Revised ※ 28 August 2022 — Accepted ※ 12 September 2022 — Issue date ※ 15 October 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)