Keyword: resonance
Paper Title Other Keywords Page
MOPOGE21 A Superconducting 217 MHz Single Spoke Cavity for the Helmholtz Linear Accelerator at GSI cavity, simulation, linac, SRF 200
 
  • F.D. Dziuba, K. Aulenbacher, W.A. Barth, V. Gettmann, T. Kürzeder, J. List, M. Miski-Oglu
    HIM, Mainz, Germany
  • K. Aulenbacher, W.A. Barth, F.D. Dziuba
    KPH, Mainz, Germany
  • K. Aulenbacher, W.A. Barth, M. Basten, C. Burandt, F.D. Dziuba, V. Gettmann, T. Kürzeder, S. Lauber, J. List, M. Miski-Oglu, S. Yaramyshev
    GSI, Darmstadt, Germany
  • T. Conrad, H. Podlech, M. Schwarz
    IAP, Frankfurt am Main, Germany
 
  Funding: Work supported by GSI, HIM, BMBF Contr. No. 05P18UMRB2
A new superconducting (SC) continuous wave (CW) linac, providing high efficient heavy ion acceleration above the coulomb barrier, is going to be built at GSI to fulfill the upcoming demands in the research field of super heavy element (SHE) synthesis. The so called HELIAC (HElmholtz LInear ACcelerator) delivers ion beams in the energy range of 3.5 MeV/u and 7.3 MeV/u with a mass to charge ratio (A/z) of up to 6. Superconducting multi-gap crossbar-H-mode (CH) cavities with a resonance frequency of 217 MHz are used for beam acceleration. In addition, SC single spoke buncher cavities should ensure longitudinal beam matching to the corresponding CH sections. Therefore, the first 217 MHz single spoke cavity with beta 0.07 has been developed at HIM/GSI and built at an industrial partner. In this paper the design of the cavity and first RF measurements during manufacturing are presented.
 
poster icon Poster MOPOGE21 [2.619 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-MOPOGE21  
About • Received ※ 18 August 2022 — Revised ※ 24 August 2022 — Accepted ※ 27 August 2022 — Issue date ※ 31 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOGE23 Conservation of Quality Factor for Superconducting Cavity and Heartbeat under Relativistic Motion cavity, acceleration, superconducting-cavity, ECR 204
 
  • H. Kim
    IBS, Daejeon, Republic of Korea
 
  Funding: This research was supported by the Rare Isotope Science Project of Institute for Basic Science funded by Ministry of Science and National Research Foundation of Korea (NRF-2013M7A1A1075764).
The conservation of quality factor under relativistic motion is applied to the superconducting cavity as well as the heartbeat of mammal. The quality factor of the superconducting cavity is conserved under relativistic motion. The frequency of the cavity decreases and the decay time increases as the velocity and acceleration are increased. The quality factor of the superconducting cavity is comparable with the total heartbeat of the mammal. The quality factor for the heartbeat of the mammal representing the total number of heartbeat is also conserved under relativistic motion. Therefore, the heart rate is inversely proportional to the life expectancy under relativistic motion.
 
poster icon Poster MOPOGE23 [0.765 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-MOPOGE23  
About • Received ※ 25 July 2022 — Revised ※ 23 August 2022 — Accepted ※ 30 August 2022 — Issue date ※ 02 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPORI20 Fabrication, Field Measurement, and Testing of a Compact RF Deflecting Cavity for ELBE cavity, pick-up, simulation, vacuum 271
 
  • T.G. Hallilingaiah, P. Michel, U. van Rienen
    Rostock University, Faculty of Computer Science and Electrical Engineering, Rostock, Germany
  • A. Arnold, S. Köppen, P. Michel
    HZDR, Dresden, Germany
  • U. van Rienen
    University of Rostock, Rostock, Germany
 
  A transverse deflecting cavity is being developed for the electron linac ELBE to separate the bunches into two or more beamlines so that multiple user experiments can be carried out simultaneously. A normal conducting double quarter-wave cavity has been designed to deliver a transverse kick of 300 kV when driven by an 800 W solid-state amplifier at 273 MHz. The main challenges in fabrication were machining the complex cavity parts with high precision, pre-tuning the cavity frequency, and the final vacuum brazing within the tolerances, which are described in this paper. The reason for a low intrinsic quality factor measured during the low power test was investigated, and suitable steps were taken to improve the quality factor. The cavity field profiles obtained from the bead-pull measurement matched the simulation results. Further, the cavity was driven up to 1 kW using a modified pick-up antenna, and eventually, vacuum conditioning of the cavity was accomplished. The cavity fulfils the design requirements and is ready for beam tests.  
poster icon Poster MOPORI20 [4.325 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-MOPORI20  
About • Received ※ 14 August 2022 — Revised ※ 15 August 2022 — Accepted ※ 01 September 2022 — Issue date ※ 07 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOGE15 Prototype HB650 Transportation Validation for the PIP-II Project cryomodule, ISOL, interface, linac 523
 
  • J.P. Holzbauer, S. Cheban, C.J. Grimm, J. Helsper, R. Thiede, A.D. Wixson
    Fermilab, Batavia, Illinois, USA
  • R. Cubizolles
    CEA-IRFU, Gif-sur-Yvette, France
  • M.T.W. Kane
    STFC/DL, Daresbury, Warrington, Cheshire, United Kingdom
 
  Funding: Work supported by the Fermi National Accelerator Laboratory, managed and operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy.
The PIP-II Project at Fermilab is centered around a superconducting 800 MeV proton linac to upgrade and modernize the Fermilab accelerator complex, allowing increased beam current to intensity frontier experiments such as LBNF-DUNE. PIP-II includes strong international collaborations, including the delivery of 12 cryomodules from European labs to FNAL (3 from STFC-UKRI in the UK and 9 from CEA in France). The transatlantic shipment of these completed modules is identified as a serious risk for the project. To mitigate this risk, a rigorous and systematic process has been developed to design and validate a transport system, including specification, procedures, logistics, and realistic testing. This paper will detail the engineering process used to manage this effort across the collaboration and the results of the first major validation testing of the integrated shipping system prior to use with a cryomodule.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-TUPOGE15  
About • Received ※ 13 August 2022 — Revised ※ 19 August 2022 — Accepted ※ 30 August 2022 — Issue date ※ 15 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPA21 Narrow Bandwidth Active Noise Control for Microphonics Rejection in Superconducting Cavities at LCLS-II cavity, controls, SRF, FPGA 785
 
  • A. Bellandi, J. Branlard
    DESY, Hamburg, Germany
  • S. Aderhold, A.L. Benwell, A. Brachmann, J.A. Diaz Cruz, D. Gonnella, S.L. Hoobler, J. Nelson, A. Ratti, L.M. Zacarias
    SLAC, Menlo Park, California, USA
  • J.A. Diaz Cruz
    UNM-ECE, Albuquerque, USA
  • R.D. Porter
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  LCLS-II is an X-Ray Free Electron Laser (XFEL) under commissioning at SLAC, being the first Continuous Wave (CW) hard XFEL in the world to come into operation. To accelerate the electron beam to an energy of 4 GeV, 280 superconducting cavities of the TESLA types are used. A Loaded Q (QL) value of 4x107 is used to drive the cavities at a power level of a few kilowatts. For this QL value, the RF cavity bandwidth is equal to 32 Hz. Therefore, keeping the cavity resonance frequency within such bandwidth is imperative to avoid a significant increase in the required RF power. In superconducting accelerators, resonance frequency variations are produced by mechanical microphonic vibrations of the cavities. One source of microphonics noise is rotary machinery such as vacuum pumps or HVAC equipment. A possible method to reject these disturbances is to use Narrowband Active Noise Control (NANC) techniques. Such a technique was already tested at DESY/CMTB and Cornell/CBETA. This proceeding presents the implementation of a NANC controller in the LCLS-II Low Level RF (LLRF) control system. Tests on the rejection of LCLS-II microphonics disturbances are also presented.  
poster icon Poster THPOPA21 [1.843 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-THPOPA21  
About • Received ※ 24 August 2022 — Revised ※ 30 August 2022 — Accepted ※ 02 September 2022 — Issue date ※ 26 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)