A Superconducting 217 MHz Single Spoke Cavity for the Helmholtz Linear Accelerator at GSI

HELMHOLTZ

Helmholtz-Institut Mainz

¹HIM Helmholtz Institute Mainz, 55099 Mainz, Germany
²GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
³IAP Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
⁴KPH Johannes Gutenberg University Mainz, 55128 Mainz, Germany

R 2nd 2

 \square

х тр

Abstract:

A new superconducting (SC) continuous wave (CW) linac, providing high efficient heavy ion acceleration above the coulomb barrier, is going to be built at GSI to fulfill the upcoming demands in the research field of super heavy element (SHE) synthesis. The so called HELIAC (HElmholtz LInear ACcelerator) delivers ion beams in the energy range of 3.5 MeV/u and 7.3 MeV/u with a mass to charge ratio (A/z) of up to 6. Superconducting multi-gap crossbar-H-mode (CH) cavities with a resonance frequency of 217 MHz are used for beam acceleration. In addition, SC single spoke buncher cavities should ensure longitudinal beam matching to the following CH sections. Therefore, the first 217 MHz single spoke cavity with β = 0.07 has been developed at HIM/GSI. In this paper the design of the cavity and first RF measurements during manufacturing are presented.

Layout of the Single Spoke Resonator (SSR)

Figure 1: Layout of the superconducting 217 MHz SSR.

Table 1: Main parameters of the cavity				
PARAMETER	UNIT	VALUE		
β (ν/c)		0.07		
Frequency	MHz	216.816		
Effective length (βλ)	mm	97		
Gap length	mm	13		
Total length	mm	416		
Total diameter	mm	565		
Tube aperture	mm	30		
R_{o}/Q_{0}		140		
E _a (design)	MV/m	5.5		
E_p/E_a		6.1		
B_p/E_a	mT/(MV/m)	8.9		

J _{Design}	aj/a i	aj/ap	٤ _r	200 μΠ ΒCΡ	<i>ͻ៸υκπ</i> Ζ	
				(7 kHz/mm)	reserve	

Boundary Conditions for Simulations

- Drift surface of the spoke and tuner were chosen as a fixed support
- 1 bar pressure on the cavity walls was adopted as applied load
- Assumption: self-supporting cavity during evacuation process
- Asymmetrical thermal shrinkage
 → stable in y-plane, shrinking in x,z-plane
- Thermal shrinkage and frequency shift determinded by total linear contraction

Figure 6: Deformation of the SSR due to 1 bar pressure difference.

Figure 5: Evacuation of the cavity at room temperature.

Table 2: Wall thickness of individual cavitycomponents.

WALL	SPOKE & CAVITY	END CAP	DISC HELIUM
THICKNESS	TANK		JACKET
mm	4	5	6

Sequential Assembly of Bare Buncher Cavity

End Cap Tuning

Successively frequency tuning by oversized end cap trimming
 (Δf = -1.5 MHz/mm)

Virtual Welding

 Frequency mismatch of +2.1 MHz due to insufficient welding shrinkage
 → compensated by virtual welding

Frequency Tuner

- Dynamic bellow tuner for slow & fast frequency adjustment at 4 K
- Measured tuning range at 293 K: $\Delta f = \pm 110 \text{ kHz/mm}$

Frequency After Final Welding

• *f* = 214.720 MHz (0.05 % < simulated)

Figure 2: Open SSR (a) before attachment of trimmed end cap (b). Temporarily assembled cavity for RF tuning (c). Weld spatter on RF surface after virtual welding (d) and surface improvement after polshing/grinding (e).

Florian Dziuba

Table 3: Influences on the cavity due to evacuationand cool down

EVACUATION	UNIT	SIMULATION	MEASUREMENT
Max. displacement end cap	μm	0.37	-
Max. von Mises stress	MPa	59	-
Δf	kHz	-48	-91
df/dp	Hz/mbar	-112	-155
COOL DOWN	UNIT	SIMULATION	MEASUREMENT
Longitudinal (z-plane) shrinkage @ 4 K	mm	0.6	-
Transverse (x-plane) shrinkage @ 4 K	mm	0.6	-
	kH7	42	_
Δf @ 4 K	RT12		

Figure 7: The cavity was installed vertically in a tub filled with LN_2 .

Surface Preparation & Cavity Finalization

55128 Mainz

Surface Treatment Recipe

- 7x Buffered Chemical Polishing (BCP) for surface improvement (12 kHz/μm, 230 μm, Δf = +2.8 MHz)
- BCP used for final frequency tuning
- 650 °C baking for 24 h avoiding Qdisease and hydrogen contamination

Status Quo & Outlook

- Cavity delivered to HIM in 04/2022
- Target frequency finally reached within the dynamic tuner range:
- *f* = 216.715 MHz (in vacuum at 293 K)
- First performance tests at 4 K with low-

MOPOGE21

Helmholtz-Institut Mainz

• Helium jacket integration

Staudingerweg 18

• High Pressure Rinsing (HPR) for 15 h to reduce field emission

Figure 8: Final SSR with helium jacket before shipment to HIM in April 2022.

level RF power planned in Q4 2022

cavity during different steps of manufacturing.

-

f.dziuba@gsi.de