Fabrication, field measurement, and testing of a compact RF deflecting cavity for ELBE

G. T. Hallilingaiah^{1,2}, A. Arnold¹, S. Köppen¹, P. Michel^{1,2}, U. van Rienen^{1,3}

¹Helmholtz Zentrum Dresden-Rossendorf, Germany ²University of Rostock, Rostock, Germany ³ Department Life, Light & Matter, University of Rostock, Rostock, Germany

Design of the RF deflecting cavity

A normal conducting deflecting cavity has been developed for beam separation. The cavity kicks the alternating bunches from a single beam into two beamlines.

Electromagnetic design and multiphysics analysis of the cavity

Valua

Ilmit

Field measurement

- The deflecting mode field profile along the beam axis was obtained using the bead-pull technique
- Spherical beads (ϕ 5 mm) were used
- Dielectric sphere perturbs only electric field
- Metallic sphere perturbs both electric and magnetic field
- •Only electric field exists at the middle of the cavity (z=0). Thus, the

Falametei		value	Unit
Cavity: width x height x length		275x181x500	mm
Cavity aperture	V_{ap}	30	mm
Resonance frequency	f ₀	273	MHz
Transverse R/Q	R_{\perp}/Q	9.96	MΩ
Intrinsic Q-factor	Q_0	11188	-
Geometry factor	G	57.03	Ω
Deflecting voltage	V_{\perp}	300	kV
RF power loss	P_0	810	W
Peak electric field	E_{pk}	2.49	MV/m
Peak power loss density	S _{pk}	1.21	W/cm ²

Cavity fabrication

a) Top stem

Port A

Pick-up probe Port B

- dielectric sphere values are scaled to match the metallic sphere at z=0.
- Subtracting the values obtained from the metallic sphere with the scaled values corresponds to |H|²

Testing of the cavity

b) Middle part

Frequency tuner Main coupler **Port D and E** Port C

Pre-tuning of the resonance frequency

- Fabrication error shifts the resonance frequency
- Stems were machined to the exact dimension
- The middle part of the cavity was machined with an excess

RF test setup

At an RF power of 400 W, the temperature on the pick-up \overline{N}

Infrared image of the pick-up at an RF power of 400 W

Silver coated pick-up cup

length of 2.5 mm on both sides where it joins the stem

Frequency sensitivity:

2.7 MHz/mm

• Three machining steps

• Final frequency after 3rd step:

273MHz + 56 kHz

 Subsequently, the cavity parts were vacuum brazed

-ning height		[mm]		[MHz]	
step t [mm]	Expec.	Measu.	Expec.	Measu.	
-	35.08	35.08	285.237	285.002	
2.00	33.08	33.16	280.830	280.407	
2.00	31.16	31.16	275.966	275.554	
0.98	30.18	30.16	273.000	273.056	
	height t [mm] - 2.00 2.00 0.98	height [m height [m Expec. 35.08 2.00 33.08 2.00 31.16 0.98 30.18	height t [mm][mm]height t [mm]Expec.Measu35.0835.082.0033.0833.162.0031.1631.160.9830.1830.16	$\begin{array}{l} \mbox{height} \\ \mbox{height} \\ \mbox{t} [mm] & [mm] & [M \\ \hline \mbox{[mm]} & [M \\ \hline \mbox{expec.} & Measu. & Expec. \\ \mbox{-} & 35.08 & 35.08 & 285.237 \\ \mbox{-} & 33.08 & 33.16 & 280.830 \\ \mbox{-} & 2.00 & 31.16 & 31.16 & 275.966 \\ \mbox{-} & 0.98 & 30.18 & 30.16 & 273.000 \\ \end{array}$	

increased to 67 °C.

Reason: Stainless steel pick-up no active cooling **Solution:** Silver coating

The cavity was vacuum conditioned at 1 kW and a maximum temperature of 43 °C was measured on the pick-up.

The cavity is ready for testing in the beamline

* Contact: Gowrishankar Hallilingaiah • Institute of Radiation Physics, Radiation Source ELBE • Email: g.hallilingaiah @hzdr.de • www.hzdr.de