Electron Accelerators and Applications
Electron linac projects
Paper Title Page
MO2AA01
The Cool Copper Collider  
 
  • E.A. Nanni
    SLAC, Menlo Park, California, USA
 
  A new concept for a low cost high efficiency linear collider based on LN2 cooled copper accelerator structures will be described. The collider is expected to have a performance similar to ILC with higher gradients allowing for the potential of higher energy reach at a substantially lower cost per GeV. The R&D status, expected performance, and future plans will be described.  
video icon
 
  please see instructions how to view/control embeded videos  
slides icon Slides MO2AA01 [6.522 MB]  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MO2AA02
LCLS-II Commissioning  
 
  • Y. Ding, C. Adolphsen, A. Brachmann, D. Gonnella, F. Zhou
    SLAC, Menlo Park, California, USA
 
  The LCLS-II CW 4 GeV SRF linac will be commissioned during the Spring of 2022. Progress and challenges will be described.  
video icon
 
  please see instructions how to view/control embeded videos  
slides icon Slides MO2AA02 [8.099 MB]  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MO2AA03
The FLASHForward Experiment at DESY  
 
  • J. Chappell
    Oxford University, Physics Department, Oxford, Oxon, United Kingdom
  • R.T.P. D’Arcy, J. Osterhoff
    DESY, Hamburg, Germany
 
  The FLASHForward experiment at DESY is a beamline built for electron-beam-driven plasma-wakefield acceleration. The drive beams, supplied by the linac of the free-electron laser FLASH, have energies of up to 1.40 GeV, a charge of up to 1 nC, emittance of a few mm mrad, a pulse duration down to 50 fs, and can be supplied at up to MHz repetition rates. In the future, FLASHForward aims to operate as a beam-quality-preserving, high efficiency, high-average-power plasma-based energy booster for FLASH. To achieve this, during its first data-taking period (2018-2021) novel techniques were developed to enable high-quality plasma wakefield acceleration at >GV/m accelerating gradients*. Further, the upper limits of the achievable repetition rate of plasma-based accelerators were explored for the first time with a view to demonstrating high-average-power (>kW) operation**. We report on recent experimental highlights and future plans for the facility.
* C. A. Lindstrom et al., Phys. Rev. Lett. 126, 014801 (2021)
** R. D’Arcy et al., Nature 603, 58-62 (2022)
 
video icon
 
  please see instructions how to view/control embeded videos  
slides icon Slides MO2AA03 [26.068 MB]  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WE2AA04 Data Analysis and Control of an MeV Ultrafast Electron Diffraction System using Machine Learning 650
 
  • T.B. Bolin, S. Biedron, M.A. Fazio, M. Martínez-Ramón, S.I. Sosa Guitron
    UNM-ECE, Albuquerque, USA
  • M. Babzien, M.G. Fedurin, J.J. Li, M.A. Palmer
    BNL, Upton, New York, USA
  • S. Biedron
    Element Aero, Chicago, USA
  • S. Biedron
    UNM-ME, Albuquerque, New Mexico, USA
 
  MeV ultrafast electron diffraction (MUED) is a pump-probe material characterization technique to study ultrafast lattice dynamics with high temporal and spatial resolution. It is a relatively young technology that has the potential to shed light onto some of the most puzzling problems in physics. This complex instrument can be advanced into a turn-key high-throughput tool with the aid of machine learning (ML) mechanisms together with high-performance computing. The MUED instrument located in the Accelerator Test Facility of Brookhaven National Laboratory was employed in this work to test different ML approaches for both data analysis and control. We characterized three materials using MUED: graphite, black phosphorous and gold thin films. Diffraction patterns were acquired in single shot mode and different ML methodologies were applied to reduce image noise. Convolutional neural network autoenconder and variational autoenconder models were utilized to extract the noise features and increase the signal-to-noise ratio. The energy jitter of the electron beam was analyzed after noise reduction of the single shot diffraction patterns.  
video icon
 
  please see instructions how to view/control embeded videos  
slides icon Slides WE2AA04 [12.865 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-WE2AA04  
About • Received ※ 30 August 2022 — Revised ※ 02 September 2022 — Accepted ※ 15 September 2022 — Issue date ※ 20 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TH1PA03
Successful Beam Operation at 33 MV/m in STF-2 Cryomodule at KEK for ILC  
 
  • Y. Yamamoto
    KEK, Ibaraki, Japan
 
  In STF at KEK, as the operational demonstration of the SRF accelerator for ILC, the STF-2 cryomodules (CM1+CM2a: one and half size CM with 12 cavities) have achieved 33 MV/m as average accelerating gradient estimated from the beam energy with 7 cavities in Mar/2019. After that, one cavity with the lowest performance installed in CM2a was replaced with one nitrogen-infused cavity developed for High-Q/High-G R&D between Japan and US. From Apr/2021, the beam operation started again and those CMs achieved 33 MV/m as average accelerating gradient with 9 cavities including one nitrogen-infused cavity. This is the very important milestone for ILC. In this report, the detailed results will be presented.  
video icon
 
  please see instructions how to view/control embeded videos  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOJO01 The ARES Linac at DESY 691
 
  • F. Burkart, R.W. Aßmann, H. Dinter, S. Jaster-Merz, W. Kuropka, F. Mayet, T. Vinatier
    DESY, Hamburg, Germany
 
  The generation and acceleration of ultra-short, high quality electron beams has attracted more and more interest in accelerator science. Electron bunches with these properties are necessary to operate and test novel diagnostics and advanced high gradient accelerating schemes. Furthermore, several medical and industrial applications require high-brightness electron beams. The dedicated R&D linac ARES at DESY (Deutsches Elektronen-Synchrotron) is now fully operational and able to produce these electron beams at the nominal energy of 155 MeV and deliver it to users. This paper gives an overview of the ARES linac and summarizes the beam parameter measurements. The possibilities for user operation will be described in detail.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-THPOJO01  
About • Received ※ 23 August 2022 — Revised ※ 31 August 2022 — Accepted ※ 01 September 2022 — Issue date ※ 06 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOJO02 Commissioning of a Movable Bunch Compressor for Sub-fs Electron Bunches 695
 
  • W. Kuropka, R.W. Aßmann, F. Burkart, H. Dinter, S. Jaster-Merz, F. Lemery, F. Mayet, B. Stacey, T. Vinatier
    DESY, Hamburg, Germany
  • R.W. Aßmann
    LNF-INFN, Frascati, Italy
  • S. Jaster-Merz
    University of Hamburg, Institut für Experimentalphysik, Hamburg, Germany
 
  Funding: DESY is a research center within the Helmholtz association HGF.
We present the first commissioning results of the movable bunch compressor (BC) designed for the ARES linac at DESY. The development and simulated performance has been reported earlier and predicts sub-fs electron bunches with high charge densities. Commissioning results of the injector part of the ARES linac delivered promising beam quality results to achieve these numbers. The bunch compressor system is foreseen to be used to bench mark numerical models for coherent synchrotron radiation (CSR) and space charge (SC) for ultra-short electron bunches. Here we will present first measurements of the dispersion as well as calculations for the longitudinal dispersion. In the future the PolariX transverse deflecting structure (TDS) will be commissioned to fully characterize the ARES electron beam.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-THPOJO02  
About • Received ※ 25 August 2022 — Revised ※ 23 August 2022 — Accepted ※ 31 August 2022 — Issue date ※ 15 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOJO03 RF Performance of a Next-Generation L-Band RF Gun at PITZ 699
 
  • M. Krasilnikov, Z. Aboulbanine, G.D. Adhikari, N. Aftab, P. Boonpornprasert, M.E. Castro Carballo, G.Z. Georgiev, J. Good, M. Groß, A. Hoffmann, C. Koschitzki, X.-K. Li, A. Lueangaramwong, D. Melkumyan, R. Niemczyk, A. Oppelt, B. Petrosyan, S. Philipp, M. Pohl, H.J. Qian, C.J. Richard, J. Schultze, F. Stephan, G. Vashchenko, T. Weilbach
    DESY Zeuthen, Zeuthen, Germany
  • M. Bousonville, F. Brinker, M. Hoffmann, K. Knebel, D. Kostin, S. Lederer, L. Lilje, S. Pfeiffer, R. Ritter, S. Schreiber, H. Weise, J. Ziegler
    DESY, Hamburg, Germany
  • G. Shu
    IHEP, Beijing, People’s Republic of China
  • M. Wenskat
    University of Hamburg, Institut für Experimentalphysik, Hamburg, Germany
 
  A new generation of normal conducting 1.3GHz RF gun was developed to provide a high-quality electron source for superconducting linac driven free-electron lasers like FLASH and European XFEL. Compared to the Gun4 series, Gun5 aims for a 50% increase of the duration of the RF pulse (up to 1 ms at 10 Hz repetition rate) combined with high gradients (up to ~60 MV/m at the cathode). In addition to the improved impedance, the new cavity is equipped with an RF probe to measure and control the amplitude and phase of the RF field inside the gun. The first prototype of the new RF gun was manufactured at DESY and installed at the Photo Injector Test facility at DESY in Zeuthen (PITZ) in October 2021. In mid-October 2021 the RF conditioning began, aiming for achieving the aforementioned RF parameters. The conditioning procedure involves a slow gradual increase in repetition rate, RF pulse duration and peak power while carefully monitoring vacuum conditions and signals from interlock sensors. The results of RF conditioning will be reported.  
poster icon Poster THPOJO03 [2.241 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-THPOJO03  
About • Received ※ 26 August 2022 — Revised ※ 31 August 2022 — Accepted ※ 03 September 2022 — Issue date ※ 15 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOJO07 Status and Reliability Enhancements of the ALBA Linac 703
 
  • D. Lanaia, R. Muñoz Horta, F. Pérez
    ALBA-CELLS, Cerdanyola del Vallès, Spain
 
  Along the years, efforts to enhance the ALBA Linac performances and reliability have been devoted, resulting in an improvement of the Linac to Booster beam transmission efficiency, and of its mean time between failures. The performance enhancement has been based on the use of optimization and control routines of the beam parameters, but also by the application of regular preventive hardware maintenance procedures. Besides, the Linac reliability has been improved also by the implementation of alternative working modes in case of hardware failures, like operating at 67 MeV, with only one klystron and one accelerating section. In this respect, a new upgrade of the RF waveguide system is being implemented, with the aim to produce 80 MeV electron beam using only one klystron that will feed both accelerating sections. Furthermore, the possibility to install a thermionic RF-gun to inject directly into the first accelerating section is under study, ensuring the Linac’s reliability even in case of a major event. Details of the Linac performance during the past years and a description of the new hardware upgrades are presented in this work.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-THPOJO07  
About • Received ※ 24 August 2022 — Revised ※ 31 August 2022 — Accepted ※ 07 September 2022 — Issue date ※ 15 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOJO08 RF Design of Traveling-Wave Accelerating Structures for the FCC-ee Pre-injector Complex 707
 
  • H.W. Pommerenke, A. Grudiev, A. Latina
    CERN, Meyrin, Switzerland
  • S. Bettoni, P. Craievich, J.-Y. Raguin, M. Schaer
    PSI, Villigen PSI, Switzerland
 
  Funding: This project received funding from the EU’s Horizon 2020 research program (grant No 951754), and was done under the auspices of CHART (Swiss Accelerator Research and Technology Collaboration).
The linacs of the FCCee (Future Circular Electron-Positron Collider) injector complex will both provide the drive beam for positron production and accelerate nominal electron and positron beams up to 6 GeV. Several linacs comprise different traveling-wave (TW) accelerating structures fulfilling the beam dynamics and rf constraints. Notably, high-phase advance large-aperture structures accelerate the positron beam at low energies. All TW structures are rotationally symmetric for easier production. Long-range wakes are damped by HOM detuning. Operating mode and HOM parameters were calculated based on lookup tables and analytic formulas, allowing for rapidly scanning large parameter spaces. In this paper, we present both methodology and realization of the rf design of the TW structures including their pulse compressors.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-THPOJO08  
About • Received ※ 24 August 2022 — Accepted ※ 08 September 2022 — Issue date ※ 15 September 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOJO09 Status of CLARA at Daresbury Laboratory 711
 
  • D. Angal-Kalinin, A.R. Bainbridge, A.D. Brynes, R.K. Buckley, S.R. Buckley, H.M. Castañeda Cortés, J.A. Clarke, L.S. Cowie, K.D. Dumbell, D.J. Dunning, A.J. Gilfellon, A.R. Goulden, J. Henderson, S. Hitchen, F. Jackson, C.R. Jenkins, M.A. Johnson, J.K. Jones, N.Y. Joshi, M.P. King, S.L. Mathisen, J.W. McKenzie, R. Mclean, K.J. Middleman, B.L. Militsyn, K.T. Morrow, A.J. Moss, B.D. Muratori, T.C.Q. Noakes, W.A. Okell, H.L. Owen, T.H. Pacey, A.E. Pollard, M.D. Roper, Y.M. Saveliev, D.J. Scott, B.J.A. Shepherd, R.J. Smith, E.W. Snedden, N. Thompson, C. Tollervey, R. Valizadeh, D.A. Walsh, A.E. Wheelhouse, P.H. Williams
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • A.R. Bainbridge, A.D. Brynes, J.A. Clarke, L.S. Cowie, K.D. Dumbell, D.J. Dunning, C.R. Jenkins, K.J. Middleman, A.J. Moss, B.D. Muratori, H.L. Owen, Y.M. Saveliev, D.J. Scott, B.J.A. Shepherd, N. Thompson, R. Valizadeh, A.J. Vick, A.E. Wheelhouse
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • A.D. Brynes
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
  • R.J. Cash, R.F. Clarke, M. Colling, G. Cox, B.D. Fell, S.A. Griffiths, M.D. Hancock, T. Hartnett, J.P. Hindley, C. Hodgkinson, G. Marshall, A. Oates, A.J. Vick, J.T.G. Wilson
    STFC/DL, Daresbury, Warrington, Cheshire, United Kingdom
  • J. Henderson
    Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
 
  CLARA (Compact Linear Accelerator for Research and Applications) is a test facility for Free Electron Laser (FEL) research and other applications at STFC’s Daresbury Laboratory. The Front End of CLARA has been used for user exploitation programme from 2018. The second exploitation period in 2021-22 provided a range of beam parameters to 8 user experiments. We report on the status, further machine development, and future plans for CLARA including Full Energy Beam Exploitation (FEBE) beamline which will provide 250 MeV/c high brightness beam for novel experiments.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-THPOJO09  
About • Received ※ 19 August 2022 — Revised ※ 28 August 2022 — Accepted ※ 05 September 2022 — Issue date ※ 15 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOJO10 RF Design and Characterisation of the CLARA 10 Hz Gun with Photocathode Load/Lock Upgrade 715
 
  • A.J. Gilfellon, L.S. Cowie, T.J. Jones, B.L. Militsyn, R. Valizadeh
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
 
  The 2.5 cell S-band 10 Hz repetition rate electron gun (Gun-10) for the CLARA (Compact Linear Accelerator for Research and Applications) facility underwent an upgrade during the scheduled shutdown period during the summer of 2019. The existing photocathode/back plate was replaced by a new back plate with interchangeable photocathode socket connected to a load/lock system capable of rapid exchanges of photocathode plugs. Here we outline motivation and RF design of the back plate and also detail the low power RF testing and characterisation of the upgraded gun in terms of the unloaded quality factor, the RF power coupling match, the percent field flatness and the operating frequency of the cavity, calculated from the frequency measured in the laboratory. Finally, via simulations using CST MWS and ASTRA, we produce a dependence of expected beam momentum vs forward power that we predict the gun will deliver once it goes back online.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-THPOJO10  
About • Received ※ 25 August 2022 — Revised ※ 31 August 2022 — Accepted ※ 31 August 2022 — Issue date ※ 16 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOJO11 Wakefield Monitor System for X-Band Lineariser Linac on CLARA 718
 
  • N.Y. Joshi, A.C. Aiken, C.R. Jenkins, A.J. Moss
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
 
  Funding: STFC-UKRI
CLARA linear accelerator in phase-2 will utilise an X-band fourth harmonic linac to linearise bunch phase space. Beam induced transverse higher order modes (HOMs) between 15.3 to 16.2GHz will be coupled out through HOM ports, which can be used to correct both position offset and angle misalignment to minimise beam degradation due to HOMs. In this paper we present design of a wakefield monitor system under development, with capability to use either baseband broadband signal for basic alignment, and also carry a detailed narrow-band spectrum analysis on all four (X and Y transverse modes from two couplers) signals. Initial laboratory testing of its subsystem is also presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-THPOJO11  
About • Received ※ 22 August 2022 — Accepted ※ 01 September 2022 — Issue date ※ 08 September 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOJO12 LCLS-II-HE Cryomodule Testing at Fermilab 721
 
  • A.T. Cravatta, T.T. Arkan, D. Bafia, B.E. Chase, M. Checchin, C. Contreras-Martinez, B. Giaccone, B.J. Hansen, E.R. Harms, B.D. Hartsell, J.A. Kaluzny, D.D. Lambert, J.N. Makara, H. Maniar, M. Martinello, Y.M. Pischalnikov, S. Posen, J. Reid, N. Solyak, D. Sun, A. Syed, R. Wang, M.J. White, G. Wu
    Fermilab, Batavia, Illinois, USA
  • S. Aderhold, A.L. Benwell, J.D. Fuerst, D. Gonnella, T. Hiatt, S.L. Hoobler, J.T. Maniscalco, J. Nelson, L.M. Zacarias
    SLAC, Menlo Park, California, USA
  • L.R. Doolittle, S. Paiagua, C. Serrano
    LBNL, Berkeley, California, USA
 
  22 Linac Coherent Light Source II (LCLS-II) cryomodules were successfully tested at the Cryomodule Test Facility (CMTF) at Fermilab. Following the completion of the LCLS-II testing program, CMTF has shifted to testing cryomodules for the LCLS-II High Energy upgrade (LCLS-II-HE). The first LCLS-II-HE cryomodule, the verification cryomodule (vCM), was successfully tested and verified the readiness of LCLS-II-HE cryomodule testing at CMTF, and production cryomodule testing has begun. Presented here are the production cryomodule test acceptance criteria, testing plan, and cryomodule test results so far.  
poster icon Poster THPOJO12 [0.899 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-THPOJO12  
About • Received ※ 18 August 2022 — Revised ※ 27 August 2022 — Accepted ※ 06 September 2022 — Issue date ※ 15 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOJO14 Distributed Coupling Linac for Efficient Acceleration of High Charge Electron Bunches 724
 
  • A. Dhar, M. Bai, Z. Li, E.A. Nanni, M.A.K. Othman, S.G. Tantawi, G.R. White
    SLAC, Menlo Park, California, USA
 
  Funding: This work was supported by the Department of Energy Contract No. DE-AC02-76SF00515.
The Electron Ion Collider requires a pre-injector linac to accelerate large electron bunches from 4 MeV up to 400 MeV over 35 m*. Currently this linac is being designed with 3 m long traveling wave structures, which provide a gradient of 16 MV/m. We propose the use of a 1 m distributed coupling design as a potential alternative and future upgrade path to this design. Distributed coupling allows power to be fed into each cavity directly via a waveguide manifold, avoiding on-axis coupling**. A distributed coupling structure at S-band was designed to optimize for shunt impedance and large aperture size. This design provides greater efficiency, thereby lowering the number of klystrons required to power the full linac. In addition, particle tracking analysis shows that this linac maintains lower emittance as bunch charge increases to 14 nC and wakefields become more prevalent. We present the design of this distributed coupling structure, as well as progress on structure manufacturing and characterization.
* F. Willeke, "Electron ion collider conceptual design report 2021," tech. rep., United States, 2021.
** S. Tantawi et al., Phys. Rev. Accel. Beams, vol. 23, p. 092001, Sep 2020.
 
poster icon Poster THPOJO14 [5.280 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-THPOJO14  
About • Received ※ 24 August 2022 — Revised ※ 31 August 2022 — Accepted ※ 01 September 2022 — Issue date ※ 15 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOJO16 High Efficiency Traveling Wave Linac With Tunable Energy 727
 
  • V.A. Dolgashev, A.K. Krasnykh, A. Romero
    SLAC, Menlo Park, California, USA
  • P. Borchard
    Dymenso LLC, San Francisco, USA
  • R.A. Kostin, S.V. Kuzikov
    Euclid TechLabs, Solon, Ohio, USA
 
  Funding: US DOE Research Opportunities in Accelerator Stewardship DE-FOA-0002463
We will present a physics design of a compact, highly efficient, energy-tunable linac to generate up to 500 W of 10 MeV electron beam power for medical and security applications. This linac will employ a patented travelling wave accelerating structure with outside power flow which combines the advantages of high efficiency with energy tunability of traveling wave cavities. Unlike standing wave structures, the proposed structure has little power reflected back to the RF source, eliminating the need for a heavy, lossy waveguide isolator. In contrast to the side-coupled cavity designs, the proposed structure is symmetrical and therefore it does not have deflecting axial fields that impair the beam transport. The high shunt impedance will allow the linac to achieve an output energy of up to 10 MeV when powered by a compact commercial 9.3 GHz 1.7 MW magnetron. For pulse-to-pulse tuning of the beam output energy we will change of the beam-loaded gradient by varying the triode gun current.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-THPOJO16  
About • Received ※ 30 August 2022 — Revised ※ 01 September 2022 — Accepted ※ 07 September 2022 — Issue date ※ 16 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOJO22 A Ground Experimental Approach Toward Understanding Mysterious Astrophysical Fast Radio Bursts 735
THOPA03   use link to see paper's listing under its alternate paper code  
 
  • Y. Sumitomo, T. Asai, D. Kobayashi, S. Kumagai, K. Kusaka, Y. Onishi, T. Seki, R. Yanagi
    Nihon University, Tokyo, Japan
  • Y. Hayakawa, T. Sakai
    LEBRA, Funabashi, Japan
  • S. Kisaka
    HU ADSE, Hiroshima, Japan
  • H. Koguchi
    AIST, Tsukuba, Japan
 
  Funding: Nihon University CST Project Research Grant (2021 Apr. ~), Japan Society for the Promotion of Science (JSPS), Grant-in-Aid for Scientific Research (KAKENHI), Grant Number JP19K12631
The Fast Radio Bursts are astrophysical events that get much more attentions increasing year by year, due to their mysterious properties of signals. The major properties of signals include a class of the brightest astrophysical events, short durations of emissions, and larger dispersion measures than the known short duration events. Interestingly, the large values of dispersion measures suggest the existence of abundant plasma around the parent bodies of emissions. To have a better understanding of basic mechanism of the Fast Radio Burst emissions, we initiated a ground-based research project at our 100 MeV electron LINAC facility, in combination with the high-beta plasma generation knowledge matured also at Nihon University, that mimics plasma fields in space. In this presentation, we overview our project and report on the status of the experiment for the induced enhanced emissions from integrated iterative interactions with plasma fields.
 
slides icon Slides THPOJO22 [0.678 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-THPOJO22  
About • Received ※ 12 August 2022 — Revised ※ 21 August 2022 — Accepted ※ 31 August 2022 — Issue date ※ 23 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)