

Plasma accelerators

> Conventional accelerators based on **RF-cavities** have been the backbone of accelerator science over the past 70 years.

- > Extremely reliable, successful and well-understood.
- > Accelerating gradients limited by electrical breakdown to ~ 100 MV/m.

> **Plasma-based accelerators** (PBAs) represent a disruptive development due to the ability of plasma to support field strengths of order **1-100 GV/m**.

- > Plasma acts as an **energy transformer**, enabling the transfer of energy from a drive beam to a trailing "witness" bunch.
- > Has the potential to reduce size and cost of accelerator facilities by orders of magnitude.

FLASHFORWARD: The Facility

PETRA III 6 GeV ⇔ 2300 m

FLASHForward

In the section and and

PWFA research

European X-FEL 17.5 GeV → 3400 m

1.25 GeV 315 m \rightarrow

FLASHFORWARD: The Facility

Image modified from R. D'Arcy et al., Phil. Trans. R. Soc. A 377, 20180392 (2019)

FLASHFORWARD. Beam-driven plasma wakefield experimentation

Primary goals of FLASHFORWARD

Develop a self-consistent plasma-accelerator stage with high efficiency, high quality, and high average power

High efficiency

Driver depletion

Transfer efficiency

Low energy spread

Emittance preservation

High beam quality

High average power

FLASHFORWARD. Beam-driven plasma wakefield experimentation

Primary goals of FLASHFORWARD

Develop a self-consistent plasma-accelerator stage with high efficiency, high quality, and high average power

High efficiency

Driver depletion

Transfer efficiency

Low energy spread

Emittance preservation

High beam quality

High average power

> Beam quality: requirements depend on application but in general,

- > Linear colliders (< 1% energy spread, $\varepsilon_N \sim 0.01$ mm mrad) to reach high luminosity with a narrow spectrum.
- > Free-electron lasers (0.1% energy spread, $\varepsilon_N \sim 1$ mm mrad) to reach high brightness.

> Efficiency: need to maximise transfer of energy from the wall to the accelerating beam.

- > Wall \rightarrow Driving beam
- > Driving beam \rightarrow Plasma wakefield
- > Plasma wakefield \rightarrow Witness beam

Illustration of primary energy transfer mechanisms

J. Chappell | LINAC2022 | 29 August 2022 | Page 7

> Solution: "beam-loading" M. Tzoufras *et al.*, Phys. Rev. Lett. **101**, 145002 (2008)

> **Drive bunch "depletion":** extract maximum energy from drive bunch by

- > Tailoring plasma density profile.
- > Shaping current profile to **minimise re-acceleration** of drive electrons.

> Witness bunch: extract maximum energy from plasma wake by

- > Modifying trajectories of returning plasma electrons.
- Shaping current profile to locally flatten longitudinal wakefield.

> Solution: "beam-loading" M. Tzoufras *et al.*, Phys. Rev. Lett. **101**, 145002 (2008)

> **Drive bunch "depletion":** extract maximum energy from drive bunch by

- > Tailoring plasma density profile.
- > Shaping current profile to **minimise re-acceleration** of drive electrons.
- > Witness bunch: extract maximum energy from plasma wake by
 - > Modifying trajectories of returning plasma electrons.
 - > Shaping current profile to **locally flatten longitudinal wakefield**.

> Solution: "beam-loading" M. Tzoufras *et al.*, Phys. Rev. Lett. **101**, 145002 (2008)

> Drive bunch "depletion": extract maximum energy from drive bunch by

- > Tailoring plasma density profile.
- > Shaping current profile to **minimise re-acceleration** of drive electrons.

> Witness bunch: extract maximum energy from plasma wake by

- > Modifying trajectories of returning plasma electrons.
- > Shaping current profile to **locally flatten longitudinal wakefield.**
- > Experimentally demonstrated **energy-spread preservation**, in combination with **100% charge coupling, 1.3 GV/m** average accelerating gradient and instantaneous energy transfer efficiency of (42±4)%.

> C. A. Lindstrøm *et al.*, Phys. Rev. Lett. **126**, 014801 (2021)

J. Chappell | LINAC2022 | 29 August 2022 | Page 10

DOM MINA NVS MINA HO MEA

> Next step: demonstrate emittance preservation during acceleration. Requires:

- > Careful **matching** of the beam into the plasma accelerator to avoid phase-space dilution.
- > Well-aligned, straight beams to avoid seeding transverse instabilities and beam break-up.

350

FLASHFORWARD Beam-driven plasma wakefield experimentation

Primary goals of FLASHFORWARD

Develop a self-consistent plasma-accelerator stage with high efficiency, high quality, and high average power

High efficiency

Driver depletion

Transfer efficiency

Low energy spread

Emittance preservation

High beam quality

High average power

FLASHFORWARD Beam-driven plasma wakefield experimentation

Primary goals of FLASHFORWARD

Develop a self-consistent plasma-accelerator stage with high efficiency, high quality, and high average power

High beam quality

Low energy spread

Emittance preservation

High average power

- > To be competitive with conventional accelerator facilities need joule-level accelerators at kHz repetition-rates and beyond.
- > Current state-of-the-art plasma-based accelerator (PBA) facilities are orders of magnitude below this.

What is the most efficient way to achieve this?

> For *beam-driven PBAs*: compatibility with RF front-end that provides the bunches for wakefield acceleration.

E.g. **FLASH** linear accelerator at DESY (up to 1.25 GeV, 1 nC e⁻ bunch):

> Trains of hundreds of $O(\mu s)$ -separated electron bunches at 10 Hz macro-pulse repetition-rate; up to 18,000 bunches per second.

Can this bunch pattern be compatible with plasma-based acceleration?

J. Chappell | LINAC2022 | 29 August 2022 | Page 14

Conventional accelerators

Inter-bunch frequency

	FLASH	cic
Inter-bunch frequency	3 MHz	2 GHz
Bunch-train length	600 µs	156 ns
Macro-pulse frequency	10 Hz	50 Hz
Max. # of bunches per second	18000	15600

J. Chappell | LINAC2022 | 29 August 2022 | Page 15

Conventional accelerators

X-band (~ 12 GHz) accelerating cavities

- > Minimum possible separation is ~ 80 ps.
- Long-range transverse wakefields induced in the metallic cavities from an acceleration event lives longer than this and must be avoided as they lead to emittance blow-up.
- > Actual separation set at **0.5 ns** i.e. 2 GHz inter-bunch frequency.

Conventional accelerators

X-band (~ 12 GHz) accelerating cavities E.g.

- > Minimum possible separation is ~ 80 ps.
- Long-range transverse wakefields induced in the metallic cavities from an acceleration > event lives longer than this and must be avoided as they lead to emittance blow-up.
- > Actual separation set at **0.5 ns** i.e. 2 GHz inter-bunch frequency.

Ion motion defines the equivalent limit in plasma-based accelerators.

- > Energy imparted into the plasma via the wakefield is transferred to ions, initiating their motion and generating highly non-uniform density profiles.
- > Must wait for their motion to dissipate before repeatable acceleration is possible.

Directly measuring wakefield-induced plasma evolution

- > Novel three-bunch plasma diagnostic technique.
- > **Leading bunch** drives a wakefield in the plasma.
- > **Probe bunch-pair** follows *n* x 0.77 ns later and drives a wakefield in the **perturbed** plasma state.
- > Scan temporal separation and measure properties of probe bunch-pair to learn about long-timescale evolution of plasma after wakefield is driven.
- > Temporal separations defined by 1.3 GHz RF frequency of **FLASH**.

Unperturbed

Probing wakefield-induced ion motion

Probing wakefield-induced ion motion

Details of signal extraction process in J. Chappell, PhD Thesis, University College London (2021)

Probing wakefield-induced ion motion

Images modified from R. D'Arcy et al., Nature 603, 58–62 (2022)

¹ J. Chappell, PhD Thesis, University College London (2021)

- > Can compare the evolution of the plasma with and without perturbation by the leading bunch to extract the ion motion perturbation lifetime.
- Probe bunch response is consistent with and without perturbation > after 63 ns.

- > Ion motion perturbation measured for a range of different experimental scenarios¹ (e.g. wakefield amplitude, plasma density, ion mass) and lifetime consistently indicated to be < 100 ns.
- > Not an impediment to high-repetition-rate operation.
- > Inter-bunch separation, $\Delta_b \ge 100$ ns, consistent with e.g. FLASH bunch trains O(1 µs)

	Conventional accelerators	Plasma accelerators
Inter-bunch frequency	Dissipation of long-range transverse wakefields	Dissipation of long-term plasma (ion) motion ???
Bunch-train length	Balance of RF pulse length, accelerating field, and breakdown rate	???
Macro-pulse frequency	Dissipation of the cumulative heating from each bunch train	???

	Conventional accelerators	Plasma accelerators
Inter-bunch frequency	Dissipation of long-range transverse wakefields	Dissipation of long-term plasma (ion) motion Generation of similar plasma properties for each event
Bunch-train length	Balance of RF pulse length, accelerating field, and breakdown rate	Temperature-based modifications to the wakefield propertie Heating of the plasma source
Macro-pulse frequency	Dissipation of the cumulative heating from each bunch train	Dissipation of the cumulative heating from each bunch trai

es

in

Plasma accelerators

Dissipation of long-term plasma (ion) motion

Generation of similar plasma properties for each event

Temperature-based modifications to the wakefield properties

Heating of the plasma source

Dissipation of the cumulative heating from each bunch train

J. Chappell | LINAC2022 | 29 August 2022 | Page 24

Progress in Plasma-Accelerator R&D at FLASHFORWARD >> Summary and outlook

High efficiency

Driver depletion

Transfer efficiency

High beam quality

Low energy spread

Emittance preservation

• Impactful and exciting research programme will help advance plasma accelerators to application-readiness

Develop a self-consistent plasma-accelerator stage with high efficiency, high quality, and high average power

High average power

