Keyword: synchrotron
Paper Title Other Keywords Page
MOPOGE01 Linac Design within HITRIplus for Particle Therapy linac, rfq, cavity, operation 134
 
  • U. Ratzinger, H. Höltermann, B. Koubek, H. Podlech
    BEVATECH, Frankfurt, Germany
  • M. Vretenar
    CERN, Meyrin, Switzerland
 
  Funding: EU Horizon 2020 Grant agreement No 101008548
Within the EU H2020 project HITRIplus for the development of cancer therapy with heavy ions a linac was designed. It is evolving from the concept of the 4 European cancer therapy centers applying light ions up to carbon. The new linac will in its simpliest version allow C4+ - beam injection into synchrotrons at 5 A MeV, with high beam transmission and allowing currents up to 5 mA alpha - particles. An advanced ECR - ion source will inject into an RFQ - IH-DTL combination. The DTL concept allows upgraded versions for A/q - values up to two and with beam energies of 7.1 A MeV from IH - tank2 and 10 A MeV from IH-tank3. The higher beam injection energies for light ions allow a relaxed synchrotron operation at lowest magnetic field levels. A main argument for the DTL extensions however is an additional linac function as radioisotope facility driver. The 7.1 A MeV are especially defined for the clean production of 211At, which may play a future role in cancer therapy. The linac will allow for high duty factors - up to 10%, to fulfil the needs for efficient radioisotope production. Solid state amplifiers with matched design RF power levels (up to 600 kW for IH3) will be used.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-MOPOGE01  
About • Received ※ 24 August 2022 — Revised ※ 27 August 2022 — Accepted ※ 01 September 2022 — Issue date ※ 07 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPORI01 A Multi-Camera System for Tomographic Beam Diagnostics detector, vacuum, controls, diagnostics 215
 
  • A. Ateş, G. Blank, H. Hähnel, U. Ratzinger
    IAP, Frankfurt am Main, Germany
 
  A prototype of a beam-induced residual gas fluorescence monitor (BIF) has been developed and successfully tested at the Institute of Applied Physics (IAP) of the Goethe University Frankfurt. This BIF is based on ten single-board cameras inserted into the vacuum and directed onto the beam axis. The overall goal is to study the beam with tomography algorithms at a low energy beam transport section. Recently, we tested the detector with a 60keV, 15mA proton beam at 20Hz and 1ms puls length. In this paper we present the ongoing investigations on image processing and application of the algebraic reconstruction technique (ART).  
poster icon Poster MOPORI01 [1.826 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-MOPORI01  
About • Received ※ 20 August 2022 — Revised ※ 21 August 2022 — Accepted ※ 28 August 2022 — Issue date ※ 01 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPA12 Development and Integration of a New Low-Level RF System for MedAustron cavity, controls, LLRF, hardware 764
 
  • M. Wolf, M. Cerv, C. Kurfürst, G. Muyan, S. Myalski, M. Repovž, C. Schmitzer
    EBG MedAustron, Wr. Neustadt, Austria
  • A. Bardorfer, B. Baričevič, P. Paglovec, M. Škabar
    I-Tech, Solkan, Slovenia
 
  The MedAustron Ion Therapy Centre is a synchrotron-based particle therapy facility, which delivers proton and carbon beams for clinical treatments. Currently, the facility treats 40 patients per day and is improving its systems and workflows to further increase this number. Although MedAustron is a young and modern center, the life-cycle of certain crucial control electronics is near end-of-life and needs to be addressed. This paper presents the 216MHz injector Low-Level Radio Frequency (iLLRF) system with option of use for the synchrotron Low-Level Radio Frequency (sLLRF - 0.4-10MHz). The developed system will unify the cavity regulation for both LLRFs and will also be used for beam diagnostics (injector/synchrotron) and RF knock-out slow extraction. The new LLRF system is based on a µTCA platform which is controlled by the MedAustron Control System based on NI-PXIe. Currently, it supports fiberoptics links (SFP+), but other links (e.g. EPICS, DOOCS) can be established. The modular implementation of this LLRF allows connections to other components, such as motors, amplifiers, or interlock systems, and will increase the robustness and maintainability of the accelerator.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-THPOPA12  
About • Received ※ 24 August 2022 — Revised ※ 25 August 2022 — Accepted ※ 31 August 2022 — Issue date ※ 01 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)