JACoW logo

Journals of Accelerator Conferences Website (JACoW)

JACoW is a publisher in Geneva, Switzerland that publishes the proceedings of accelerator conferences held around the world by an international collaboration of editors.


BiBTeX citation export for MOPOGE01: Linac Design within HITRIplus for Particle Therapy

@inproceedings{ratzinger:linac2022-mopoge01,
  author       = {U. Ratzinger and H. Höltermann and B. Koubek and H. Podlech and M. Vretenar},
  title        = {{Linac Design within HITRIplus for Particle Therapy}},
  booktitle    = {Proc. LINAC'22},
% booktitle    = {Proc. 31st International Linear Accelerator Conference (LINAC'22)},
  pages        = {134--137},
  eid          = {MOPOGE01},
  language     = {english},
  keywords     = {linac, synchrotron, rfq, cavity, operation},
  venue        = {Liverpool, UK},
  series       = {International Linear Accelerator Conference},
  number       = {31},
  publisher    = {JACoW Publishing, Geneva, Switzerland},
  month        = {09},
  year         = {2022},
  issn         = {2226-0366},
  isbn         = {978-3-95450-215-8},
  doi          = {10.18429/JACoW-LINAC2022-MOPOGE01},
  url          = {https://jacow.org/linac2022/papers/mopoge01.pdf},
  abstract     = {{Within the EU H2020 project HITRIplus for the development of cancer therapy with heavy ions a linac was designed. It is evolving from the concept of the 4 European cancer therapy centers applying light ions up to carbon. The new linac will in its simpliest version allow C⁴⁺ - beam injection into synchrotrons at 5 A MeV, with high beam transmission and allowing currents up to 5 mA alpha - particles. An advanced ECR - ion source will inject into an RFQ - IH-DTL combination. The DTL concept allows upgraded versions for A/q - values up to two and with beam energies of 7.1 A MeV from IH - tank2 and 10 A MeV from IH-tank3. The higher beam injection energies for light ions allow a relaxed synchrotron operation at lowest magnetic field levels. A main argument for the DTL extensions however is an additional linac function as radioisotope facility driver. The 7.1 A MeV are especially defined for the clean production of 211At, which may play a future role in cancer therapy. The linac will allow for high duty factors - up to 10%, to fulfil the needs for efficient radioisotope production. Solid state amplifiers with matched design RF power levels (up to 600 kW for IH3) will be used.}},
}