Keyword: lattice
Paper Title Other Keywords Page
TUPORI04 Cavity Failure Compensation Strategies in Superconducting Linacs cavity, linac, cryomodule, database 552
 
  • A. Plaçais, F. Bouly
    LPSC, Grenoble Cedex, France
 
  RF cavities in linear accelerators are subject to failure, preventing the beam from reaching it’s nominal energy. This is particularly problematic for Accelerator Driven Systems (ADS), where the thermal fluctuations of the spallation target must be avoided and every fault shall be rapidly compensated for. In this study we present LightWin. This tool under development aims to create a database of the possible cavity failures and their associated compensation settings for a given accelerator. We apply it on the MYRRHA ADS, with a scenario including various faults distributed along the accelerator, and compare the settings found by LightWin to those found by the code TraceWin. We show that both tools find different compensation settings. We also outline the limitations of LightWin and explain the upcoming improvements.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-TUPORI04  
About • Received ※ 23 August 2022 — Revised ※ 20 August 2022 — Accepted ※ 01 September 2022 — Issue date ※ 11 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPORI19 Beam Dynamics Framework Incorporating Acceleration Used to Define the Minimum Aperture of RF Cavity For FODO-like Focusing Scheme for Proton Radiotherapy Linac cavity, quadrupole, acceleration, focusing 589
 
  • M.J.W. Southerby, R. Apsimon
    Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
 
  Funding: Supported by the Cockcroft Institute Core Grant, ST/P002056/1.
In this paper, we present a generalised analytical framework for beam dynamics studies and lattice designs, while incorporating longitudinal acceleration of bunches of charged particles. We study a ’FODO-like’ scheme, whereby we have an alternating array of focusing and defocusing quadrupoles and study how this differs from a standard FODO lattice due to acceleration. We present optimisation techniques to provide quadrupole parameters, cavity lengths, and required drift lengths under different constraints.
 
poster icon Poster TUPORI19 [0.997 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-TUPORI19  
About • Received ※ 23 August 2022 — Revised ※ 27 August 2022 — Accepted ※ 29 August 2022 — Issue date ※ 01 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)