Keyword: EPICS
Paper Title Other Keywords Page
TUPOJO12 Development of Emittance Meter Instrument for MYRRHA emittance, controls, radiation, LEBT 368
 
  • A. Rodríguez Páramo, I. Bustinduy, S. Masa, R. Miracoli, V. Toyos, S. Varnasseri
    ESS Bilbao, Zamudio, Spain
  • L. De Keukeleere, F. Doucet, A. Ponton, A. Tanquintic
    SCK•CEN, Mol, Belgium
  • J. Herranz
    Proactive Research and Development, Sabadell, Spain
 
  For the commissioning of the Myrrha proton Linac an Emittance Meter Instrument (EMI) has been foreseen. The EMI will be installed in a dedicated test bench for linac commissioning. The test bench will be initially placed after the RFQ with energies of 1.5 MeV, and in later stages moved to other sections of the Normal Con-ducting Linac for operation at 6 and 17 MeV. The Myrrha EMI will be composed by two slit and grid subsystems for measurement of the phase space in the horizontal and vertical directions. For collimating the beam, graphite slits are used, and the beam aperture is measured in the SEM grids placed downstream. Then, the control system performs signal amplification, data acquisition, and motion control, with the different sys-tems integrated in an EPICs IOC. The system, manufactured by ESS-Bilbao and Proac-tive R&D, has been tested on the ESS-Bilbao 45 keV and soon will be integrated in Myrrha facilities. We present the EMI design, with irradiation analysis and emittance reconstruction, and the integration tests results.  
poster icon Poster TUPOJO12 [1.141 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-TUPOJO12  
About • Received ※ 19 August 2022 — Revised ※ 30 August 2022 — Accepted ※ 02 September 2022 — Issue date ※ 07 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPA14 MTCA.4-Based LLRF System Prototype Status for MYRRHA LLRF, cavity, operation, cryomodule 771
 
  • C. Joly, S. Berthelot, N. Gandolfo, J. Rozé, J.-F. Yaniche
    Université Paris-Saclay, CNRS/IN2P3, IJCLab, Orsay, France
  • J-L. Bolli, I. Garcia, C. Gaudin
    IOXOS Technologies, Gland, Switzerland
  • O. Bourrion, D. Tourres
    LPSC, Grenoble Cedex, France
  • S. Boussa, W. De Cock, P. Della Faille, F. Pompon, E. Verhagen
    SCK•CEN, Mol, Belgium
 
  Within the framework of MINERVA, the first Phase of MYRRHA (Multi-purpose hYbrid Research Reactor for High-tech Applications) project, IN2P3 labs are in charge of the development of several accelerator elements. Among those, a fully equipped Spoke cryomodule prototype was constructed. It integrates two superconducting single spoke cavities operating at 2K, the RF power couplers and the associated cold tuning systems. On the control side, a MTCA.4-based Low Level RadioFrequency (LLRF) system prototype has been implemented by IJCLab including FPGA specific firmware, a new µRTM frequency downconverter module from the company IOxOS Technologies and EPICS developments in collaboration with the SCK•CEN. The status of the LLRF system will be shown as well as its preliminary tests results.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-THPOPA14  
About • Received ※ 23 August 2022 — Revised ※ 26 August 2022 — Accepted ※ 01 September 2022 — Issue date ※ 01 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPA18 Development of a Tuner Control System for Low-Energy Superconducting Linac at RAON controls, cavity, LLRF, cryomodule 778
 
  • H. Kim, M.O. Hyun, H. Jang, M.S. Kim, Y. Kim
    IBS, Daejeon, Republic of Korea
 
  Funding: This research was supported by the RISP of ibs funded by the Ministry of Science and the National Research Foundation (NRF) of the Republic of Korea under Contract 2013M7A1A1075764.
We propose a tuner control system for low-energy superconducting linac at RAON. The frequency error of the superconducting cavities must be smaller than a few of Hz to operate in beam acceleration mode. To minimize the freuqency error as much as possible, the error is calculated in the low-level RF(LLRF), and the proposed tuner control system changes the superconducting cavity frequency by using a mechanical tuner and a motor attached to the cavity directly. This control system deals with not only the initial frequency error of the cavity but also the frequency drift of the cavity induced by external disturbance such as the slow fluctuation helium pressure automatically. In addition, an automatic proportional gain calibration technique is also proposed. In this paper, the detailed operation and techniques will be described.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-THPOPA18  
About • Received ※ 13 August 2022 — Revised ※ 23 August 2022 — Accepted ※ 01 September 2022 — Issue date ※ 11 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)