

Belgian Nuclear Research Centre

A. R. Páramo⁺, I. Bustinduy, S. Masa, R. Miracoli, V. Toyos, S. Varnasseri, *Consorcio ESS-Bilbao, Spain* F. Doucet, L. de Keukeleere, A. Ponton, A. Tanquintic, SCK-CEN, Belgium

J. Herranz, *ProActive R&D, Spain*

Introduction

- Emittance Meter for MYRRHA based on a slit/grid system
- \Box Designed with graphite slit and tungsten wires to withstand beam irradiation with short pulses of 100 μ s at 10 Hz
- □ Installed in test bench for Linac commissioning at different energies 1.5, 6 and 17 MeV

Main design parameters for MYRRHA EMI

Parameter	Value
Current	4 mA
Pulse duration	100 µs
Freq.	10 Hz
Duty Cycle	0.1 %
Minimum Beam Size, rms	1 mm
Max. Beam Extension	$\pm 20 \text{ mm}$
Max. Beam Divergence	$\pm 20 \text{ mrad}$

Beam Energy	1.5 / 6 / 17 MeV
Beam Power	6 / 24 / 68 kW
Average Power	6 / 24 / 68 W

Design

- Emittance simulations using linear tracing with python
- □ Slits irradiation analysis Fenics keeping stresses below graphite strength (σ <130 MPa)
- Grid wires heating solving heat equation keeping temperature below thermionic emission (7<2000 K)

Control & Electronics

- □ Front-End for signal amplification, Power Supply for bias voltage, I/O, Motion Control and DAQ systems.
- □ The software is developed in EPICs and the OPIs with CSS

Schematic of the different systems for the EMI

Integration Tests

Integration test in the 45 keV ESS-Bilbao Injector

 \Box Test with a pencil beam of ~150 μ A

- Scans using a pyepics script with data saved in hdf5
- Pencil Beam Profile with position scan
- Emittance scan in y plane with 29 slit steps of 0.5 mm resolution and 5 grid steps for a resolution of 0.35 mrad

Pencil Profile Scan with GR01

