Keyword: instrumentation
Paper Title Other Keywords Page
MOPORI05 Application of Virtual Diagnostics in the FEBE Clara User Area diagnostics, simulation, operation, quadrupole 231
 
  • J. Wolfenden, C. Swain, C.P. Welsch
    The University of Liverpool, Liverpool, United Kingdom
  • D.J. Dunning, J.K. Jones, T.H. Pacey, A.E. Pollard
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • C. Swain, C.P. Welsch, J. Wolfenden
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
 
  Funding: This work is supported by the AWAKE-UK phase II project funded by STFC and the STFC Cockcroft core grant No. ST/G008248/1.
Successful user experiments at particle beam facilities are dependent upon the awareness of beam characteristics at the interaction point. Often, properties are measured beforehand for fixed operation modes; users then rely on the long-term stability of the beam. Otherwise, diagnostics must be integrated into a user experiment, costing resources and limiting space in the user area. This contribution proposes the application of machine learning to develop a suite of virtual diagnostic systems. Virtual diagnostics take data at easy to access locations, and infer beam properties at locations where a measurement has not been taken, and often cannot be taken. Here the focus is the user area at the planned Full Energy Beam Exploitation (FEBE) upgrade to the CLARA facility (UK). Presented is a simulation-based proof-of-concept for a variety of virtual diagnostics. Transverse and longitudinal properties are measured upstream of the user area, coupled with the beam optics parameters leading to the user area, and input into a neural network, to predict the same parameters within the user area. Potential instrumentation for FEBE CLARA virtual diagnostics will also be discussed.
 
poster icon Poster MOPORI05 [0.613 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-MOPORI05  
About • Received ※ 17 August 2022 — Revised ※ 22 August 2022 — Accepted ※ 28 August 2022 — Issue date ※ 01 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)