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Abstract
Successful user experiments at particle beam facilities

are dependent upon the awareness of beam characteristics
at the interaction point. Often, properties are measured be-
forehand for fixed operation modes; users then rely on the
long-term stability of the beam. Otherwise, diagnostics must
be integrated into a user experiment, costing resources and
limiting space in the user area. This contribution proposes
the application of machine learning to develop a suite of
virtual diagnostic systems. Virtual diagnostics take data
at easy to access locations, and infer beam properties at
locations where a measurement has not been taken, and of-
ten cannot be taken. Here the focus is the user area at the
planned Full Energy Beam Exploitation (FEBE) upgrade to
the CLARA facility (UK). Presented is a simulation-based
proof-of-concept for a variety of virtual diagnostics. Trans-
verse and longitudinal properties are measured upstream
of the user area, coupled with the beam optics parameters
leading to the user area, and input into a neural network, to
predict the same parameters within the user area. Potential
instrumentation for FEBE CLARA virtual diagnostics will
also be discussed.

INTRODUCTION
The interaction point (IP) in a particle accelerator is the

focal point at which the attention of users and operators con-
verge. At this point users require certain beam parameters
in order to achieve their desired output, whilst operators
monitor this location and tune the machine settings accord-
ingly. The balance of these two sets of goals is key to any
successful exploitation plan. If the user blocks the operators
diagnostic efforts then they cannot be certain of the beam
parameters their instrumentation receives; likewise if oper-
ator diagnostics interfere with the users ability to receive
the beam in a manner suited to their needs, their output is
affected. A utilitarian approach is therefore required to pro-
ceed. Standard practise is therefore to operate in nominal
"user modes". These are machine settings which provide a
stable beam with known parameters. These parameters are
measured in great invasive detail ahead of user operation,
and the machine stability utilised to reliably reproduce these
parameters once invasive high resolution diagnostics are
removed. In general, this approach works well. Other lower
resolution non-invasive measures can be used to monitor the
beam away from the IP, and machine jitter can be quantified
and converted into an uncertainty for users, which can then
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be baked directly into their output. However, issues can arise
when users require non-standard beam parameters or when
the facility is using a novel acceleration scheme, such as
plasma wakefield acceleration [1, 2]. The former requires
operators to tune the machine settings on-the-fly, meaning
either the beam is tuned with less resolution due to a lack
of diagnostics, or the user loses beam time as the required
diagnostics are inserted and then removed from the IP. The
latter suffers, at this time, from a fundamental shot-to-shot
instability, which means a much larger error is introduced
when relying upon machine stability with certain machine
parameters. An obvious solution one might suggest is the
implementation of several novel non-invasive diagnostics
that have been developed in recent years [3–6]. Unfortu-
nately these methods would still fall foul of the user-operator
balance described above as the instrumentation would need
to be placed close to the IP, and hence user instrumentation.
It is here that the concept of a virtual diagnostic (VD) can be
deployed. A VD is a technique based upon machine learn-
ing which uses beam measurements from one location on a
beamline to infer, with high accuracy, beam parameters at
another location. This practise could therefore be used to
move high resolution IP diagnostics away from the IP, free-
ing the space for users, whilst still providing shot-to-shot
beam measurements, even in exotic operational modes.

Presented in this contribution is a case study into the ap-
plication of such VDs in the framework of the full energy
beam exploitation (FEBE) CLARA (STFC, UK) [7] user
area IP. This simple example focuses solely on transverse
beam size measurements from particle tracking simulations
(Elegant [8]), but other beam parameters will be discussed.
The goal is to maintain an alignment with experimental plans
for the facility, providing actionable VD implementations.
Two VD options will be discussed, along with the accompa-
nying diagnostic instrumentation.

SIMULATION
As with any application of machine learning, a signifi-

cant quantity of quality input and output data is required
in order to facilitate model training. To produce this data,
the particle tracking code Elegant was used. A lattice file
for a nominal FEBE CLARA operational mode was chosen.
This lattice had been tuned to maximise the beam current at
the IP; however, the actual absolute values of the machine
settings are unimportant at this stage. In order to produce
a random sampling of the transverse beam parameters at
the IP, the K1 values of several quadrupole magnets in the
beamline were chosen, presented in Fig. 1, and randomly
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Figure 1: A latter section of the FEBE CLARA beamline. Quadrupoles varied and screens used in simulations are indicated.

varied within a range of ±20 % around the nominal value.
These quadrupoles were chosen as they produced the largest
change in transverse beam parameters at the IP, whilst main-
taining beam transport. This was specific to this beam setup
and other operational modes may require different element
variations to achieve the same effect. The 6D phase param-
eters of the ensuing macro-particles were then captured at
planned diagnostic stations; again, keeping a practical fo-
cus on long-term implementation. These 6D measurements
could then be used to produce a variety of inputs and outputs
for the machine learning model. In this test case, a simple
scenario of 2D beam profile was chosen.

Two implementation methods were targeted in this study.
The first was a "Pre-IP" method, placing a non-invasive beam
profile diagnostic upstream of the IP to produce beam profile
measurements at the IP. For this model, a screen at the end
of the FEBE transfer line was chosen as an input, with the IP
as an output, indicated in Fig. 1. The second implementation
was a "Post-IP" method, placing an invasive beam profile
diagnostic downstream of the IP close to the beam dump,
to produce upstream beam profile images of the IP. This
instance required the beam dump screen as an input, with
the IP as an output once again, shown in Fig. 1. Simulations
were used to generate two databases of 10,000 pairs of beam
profile images, with their associated machine settings (i.e.
quadrupole K1 values).

CONVOLUTIONAL NEURAL NETWORK
The machine learning model chosen in this instance was

based upon a convolutional neural network (CNN) archi-

tecture [9]. The model takes the images described in the
above section (48 px × 48 px) and the machine settings (var-
ied quadrupole K1 values in this instance) as inputs and
produces beam profile images at the IP as an output. The
model was initially trained roughly by hand before conduct-
ing hyperband tuning [10]. Hyperband tuning produces
a large array of models instances with stochastically var-
ied hyperparameters. These models are trained for several
epochs, the accuracy produced is then evaluated, and the
worst performing models are dropped. This process then re-
peats for the remaining models until only one optimal model
remains. This process was conducted separately for each
of the two test cases. The model structure, with associated
tunable hyperparameters, is presented in Fig. 2. The first
CNN sub-structure is comprised of several convolution and
maxpooling layers, the second CNN sub-structure is com-
prised of several convolution and upsampling layers. The
fully connected (FC) dense layers at the centre join the two
sub-structures together and provide an input for the machine
settings.

RESULTS
The models produced by the tuning process were then

passed example input images and machine settings to evalu-
ate the IP images produced. Example images of the Pre-IP
(top) and Post-IP (bottom) methods are presented in Fig. 3.
The left images are the input images, the centre images are
the simulated images from Elegant, and the right images are
the model prediction. It is clear from Fig. 3 that the beam
profile can be reproduced to extremely fine detail, with even

Figure 2: The model structure of the full tunable CNN. Tuned parameters are in red, model components in blue. CNN =
Convolutional Neural Network; FC = Fully Connected.
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Figure 3: Example inputs, simulated outputs, and predicted
outputs for the two models. Top: Pre-IP method. Input 2D
beam profile from FEBE CLARA transfer arc, output 2D
beam profile at IP. Bottom: Post-IP method. Input 2D beam
profile from FEBE CLARA beam dump, output 2D beam
profile at IP.

small charge density fluctuations within the profile being
predicted correctly. The RMS error generated by the training
and tuning process on these predicted images in comparison
to the simulated ground truth is on average ∼ 0.01 %.

There are negligible differences in performance between
the Pre-IP and Post-IP methods. This implies that the recon-
struction process is reversible, despite the model missing
several parameters which would traditionally be viewed as
critical to a particle tracking code. Therefore, which of the
two methods to implement would be dependent upon the
practical scenario in question, and would not be reliant on,
or suffer from, variations in accuracy or resolution.

CONCLUSIONS
This contribution has demonstrated a test case for the util-

isation of VD techniques to predict IP beam profiles using
measurements away from the IP. The high accuracy of these
results could be linked to the simplicity of these test cases;
from Fig. 1, which is the latter section of FEBE CLARA,
it is clear that the number of optical elements which have
been varied is a small quantity of the possible options. The
link to longitudinal profile variations has also not been in-
cluded. Therefore, further studies are required to increase
the complexity of the variations within the training data
and to include longitudinal effects. This framework has
been constructed with this in mind, and will serve as a solid
foundation for these works. The simulations and CNN archi-
tecture are in no way linked or dependent upon the specifics
of the test cases studied here, and would function equally
well for other measurable quantities beyond beam profile;
although it is likely that the accuracy would vary from that
found here.

An secondary outcome of this work has also been the
predictive capability of the CNN model. In the Pre-IP case,
for a given input image, the final focusing quadrupoles can
be varied offline, and the IP beam profile predicted ahead of
time. This could serve as a operational tuning tool during
user beam periods, where non-standard operational modes
have been requested.

This study has been driven by a goal of simple implemen-
tation. Beam profiles are measured using an array of stan-
dardised instrumentation, both invasive and non-invasive,
meaning the experimental measurements required to drive
the work presented here would be simple to put into practise.
Future work looking at other beam parameters must take
this into account. Including experimental and hardware lim-
itations into these models in often a simple, yet overlooked,
task. This will often ease the transition from training and
prediction with simulated results, to practical measurables.
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