Keyword: booster
Paper Title Other Keywords Page
MOPOGE16 Development of High-Gradient Accelerating Structures for Proton Radiography Booster at LANSCE cavity, linac, proton, coupling 188
 
  • S.S. Kurennoy, Y.K. Batygin, E.R. Olivas
    LANL, Los Alamos, New Mexico, USA
 
  Increasing energy of proton beam at LANSCE from 800 MeV to 3 GeV improves radiography resolution ~10 times. We propose accomplishing this energy boost with a compact cost-effective linac based on normal conducting high-gradient (HG) RF accelerating structures. Such an unusual proton linac is feasible for proton radiography (pRad), which operates with very short beam (and RF) pulses. For a compact pRad booster at LANSCE, we have developed a multi-stage design: a short L-band section to capture and compress the 800-MeV proton beam from the existing linac followed by the main HG linac based on S- and C-band cavities, and finally, by an L-band de-buncher*. Here we present details of development, including EM and thermal-stress analysis, of proton HG structures with distributed RF coupling for the pRad booster. A short test structure is designed specifically for measurements at the LANL C-band RF Test Stand.
* S.S. Kurennoy, Y.K. Batygin. IPAC21, MOPAB210.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-MOPOGE16  
About • Received ※ 23 August 2022 — Accepted ※ 02 September 2022 — Issue date ※ 03 September 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOJO07 Status and Reliability Enhancements of the ALBA Linac linac, klystron, operation, gun 703
 
  • D. Lanaia, R. Muñoz Horta, F. Pérez
    ALBA-CELLS, Cerdanyola del Vallès, Spain
 
  Along the years, efforts to enhance the ALBA Linac performances and reliability have been devoted, resulting in an improvement of the Linac to Booster beam transmission efficiency, and of its mean time between failures. The performance enhancement has been based on the use of optimization and control routines of the beam parameters, but also by the application of regular preventive hardware maintenance procedures. Besides, the Linac reliability has been improved also by the implementation of alternative working modes in case of hardware failures, like operating at 67 MeV, with only one klystron and one accelerating section. In this respect, a new upgrade of the RF waveguide system is being implemented, with the aim to produce 80 MeV electron beam using only one klystron that will feed both accelerating sections. Furthermore, the possibility to install a thermionic RF-gun to inject directly into the first accelerating section is under study, ensuring the Linac’s reliability even in case of a major event. Details of the Linac performance during the past years and a description of the new hardware upgrades are presented in this work.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-THPOJO07  
About • Received ※ 24 August 2022 — Revised ※ 31 August 2022 — Accepted ※ 07 September 2022 — Issue date ※ 15 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)