Proton and Ion Accelerators and Applications
Superconducting structures
Paper Title Page
MOPOGE14 Current Status of the Spoke Cavity Prototyping for the JAEA-ADS Linac 180
 
  • J. Tamura, Y. Kondo, F. Maekawa, S.I. Meigo, B. Yee-Rendón
    JAEA/J-PARC, Tokai-mura, Japan
  • T. Dohmae, E. Kako, H. Sakai, K. Umemori
    KEK, Ibaraki, Japan
 
  The Japan Atomic Energy Agency (JAEA) has proposed an accelerator-driven subcritical system (ADS) to efficiently reduce high-level radioactive waste generated at nuclear power plants. One of the challenging R&D aspects of ADS is the reliability of the accelerator. In preparation for the full-scale design of the CW proton linac for the JAEA-ADS, we are now prototyping a low-beta (around 0.2) single spoke cavity. Since there is no experience in Japan in manufacturing a superconducting spoke cavity, prototyping and performance testing of the cavity is essential to ensure the feasibility of the JAEA-ADS linac. In the Japanese fiscal year 2021, we have started welding cavity parts together. By preliminarily examining the electron beam welding conditions, each press-formed niobium part was joined with a smooth welding bead. The current status of the spoke cavity prototyping for the JAEA-ADS linac is presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-MOPOGE14  
About • Received ※ 01 August 2022 — Revised ※ 21 August 2022 — Accepted ※ 14 September 2022 — Issue date ※ 26 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOGE19 Preliminary Study on the Cryogenic Control System Within RF Superconductive Linac Projects 197
 
  • H. Sibileau, M.L. Beniken
    ACS, Orsay, France
  • T. Junquera
    Accelerators and Cryogenic Systems, Orsay, France
  • D. Masson
    ISII-TECH, Saint-Etienne-du-Rouvray, France
 
  Several RF Superconductive LINAC projects are underway in different laboratories around the world, with various objectives such as research in physics, irradiation tests, production of radioisotopes for medical purposes. Superconducting operation of the accelerating cavities requires them to be maintained at cryogenic temperatures (2K - 4K) by the use of cryogenic fluids. This requires a complete cryogenic control system, including sensors, actuators, local controllers and PLCs. We describe the process by which the preliminary design of the cryogenic control system for the accelerator’s cryomodules and valve boxes may be built. It starts with the functional and performance requirements of the system, followed by the definition of use cases and the study of the necessary cryogenic instrumentation. This leads to a preliminary design of the architecture of the cryogenic control system using Siemens hardware, as well as cryogenic sequences describing standard phases of operation of the LINAC. We also discuss how to take advantage of the modularity of cryomodules for control system implementation and some recent developments in PLC simulation.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-MOPOGE19  
About • Received ※ 24 August 2022 — Revised ※ 01 September 2022 — Accepted ※ 11 September 2022 — Issue date ※ 16 October 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOGE21 A Superconducting 217 MHz Single Spoke Cavity for the Helmholtz Linear Accelerator at GSI 200
 
  • F.D. Dziuba, K. Aulenbacher, W.A. Barth, V. Gettmann, T. Kürzeder, J. List, M. Miski-Oglu
    HIM, Mainz, Germany
  • K. Aulenbacher, W.A. Barth, F.D. Dziuba
    KPH, Mainz, Germany
  • K. Aulenbacher, W.A. Barth, M. Basten, C. Burandt, F.D. Dziuba, V. Gettmann, T. Kürzeder, S. Lauber, J. List, M. Miski-Oglu, S. Yaramyshev
    GSI, Darmstadt, Germany
  • T. Conrad, H. Podlech, M. Schwarz
    IAP, Frankfurt am Main, Germany
 
  Funding: Work supported by GSI, HIM, BMBF Contr. No. 05P18UMRB2
A new superconducting (SC) continuous wave (CW) linac, providing high efficient heavy ion acceleration above the coulomb barrier, is going to be built at GSI to fulfill the upcoming demands in the research field of super heavy element (SHE) synthesis. The so called HELIAC (HElmholtz LInear ACcelerator) delivers ion beams in the energy range of 3.5 MeV/u and 7.3 MeV/u with a mass to charge ratio (A/z) of up to 6. Superconducting multi-gap crossbar-H-mode (CH) cavities with a resonance frequency of 217 MHz are used for beam acceleration. In addition, SC single spoke buncher cavities should ensure longitudinal beam matching to the corresponding CH sections. Therefore, the first 217 MHz single spoke cavity with beta 0.07 has been developed at HIM/GSI and built at an industrial partner. In this paper the design of the cavity and first RF measurements during manufacturing are presented.
 
poster icon Poster MOPOGE21 [2.619 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-MOPOGE21  
About • Received ※ 18 August 2022 — Revised ※ 24 August 2022 — Accepted ※ 27 August 2022 — Issue date ※ 31 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOGE23 Conservation of Quality Factor for Superconducting Cavity and Heartbeat under Relativistic Motion 204
 
  • H. Kim
    IBS, Daejeon, Republic of Korea
 
  Funding: This research was supported by the Rare Isotope Science Project of Institute for Basic Science funded by Ministry of Science and National Research Foundation of Korea (NRF-2013M7A1A1075764).
The conservation of quality factor under relativistic motion is applied to the superconducting cavity as well as the heartbeat of mammal. The quality factor of the superconducting cavity is conserved under relativistic motion. The frequency of the cavity decreases and the decay time increases as the velocity and acceleration are increased. The quality factor of the superconducting cavity is comparable with the total heartbeat of the mammal. The quality factor for the heartbeat of the mammal representing the total number of heartbeat is also conserved under relativistic motion. Therefore, the heart rate is inversely proportional to the life expectancy under relativistic motion.
 
poster icon Poster MOPOGE23 [0.765 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-MOPOGE23  
About • Received ※ 25 July 2022 — Revised ※ 23 August 2022 — Accepted ※ 30 August 2022 — Issue date ※ 02 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOGE24 Understanding Q Slope of Superconducting Cavity with Magnetic Defect and Field Emission 208
MOOPA07   use link to see paper's listing under its alternate paper code  
 
  • H. Kim, Y. Jung, H. Kim, J.W. Kim
    IBS, Daejeon, Republic of Korea
  • S. Jeon
    Kyungpook National University, Daegu, Republic of Korea
 
  Funding: This research was supported by the RISP of ibs funded by the Ministry of Science and the National Research Foundation (NRF) of the Republic of Korea under Contract 2013M7A1A1075764.
RF test for quarter-wave resonator (QWR) and half-wave resonator (HWR) superconducting cavities is performed at low temperature. The quality factors of the superconducting cavities are measured as a function of accelerating field. The magnetic heating effect for the quarter-wave resonator (QWR) is studied. For the half-wave resonator (HWR), the Q slope degradation is investigated with x-ray radiation and field emission.
 
slides icon Slides MOPOGE24 [2.506 MB]  
poster icon Poster MOPOGE24 [1.174 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-MOPOGE24  
About • Received ※ 25 July 2022 — Revised ※ 18 August 2022 — Accepted ※ 23 August 2022 — Issue date ※ 12 October 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOGE25 Rf Measurement and Characterisation of European Spallation Source Cavities at UKRI-STFC Daresbury Laboratory and DESY 212
 
  • P.A. Smith, A.E.T. Akintola, K.D. Dumbell, M.J. Ellis, S. Hitchen, P.C. Hornickel, C.R. Jenkins, A.J. May, P.A. McIntosh, K.J. Middleman, A.J. Moss, S.M. Pattalwar, M.D. Pendleton, J.O.W. Poynton, A.E. Wheelhouse, S. Wilde
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • G. Jones, M. Lowe, D.A. Mason, G. Miller, J. Mutch, A. Oates, J.T.G. Wilson
    STFC/DL, Daresbury, Warrington, Cheshire, United Kingdom
  • K.J. Middleman
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • D. Reschke, L. Steder, M. Wiencek
    DESY, Hamburg, Germany
 
  The Accelerator Science and Technology Centre (ASTeC) is responsible for delivering 88 High Beta (HB) cavities as part of the European Spallation Source (ESS) facility in Sweden. The bulk Niobium Superconducting Radio Frequency (SRF) cavities operate at 704 MHz. They have been fabricated in industry and are currently being tested at Daresbury Laboratory and Deutsches Elektronen-Synchrotron (DESY). They will then be delivered to Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA) Saclay, France for integration into cryomodules. To date 50 cavities have been conditioned and evaluated and 36 cavities have been delivered to CEA. This paper discusses the experiences and testing of the cavities performed to date at both sites  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-MOPOGE25  
About • Received ※ 24 August 2022 — Revised ※ 29 August 2022 — Accepted ※ 01 September 2022 — Issue date ※ 04 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FR1AA02
CSNS-II Superconducting Linac Design  
 
  • J. Peng
    IHEP CSNS, Guangdong Province, People’s Republic of China
 
  This paper presents the physics design of the superconducting linac for CSNS-II project which starts in this year. In the CSNS upgrade project, the linac energy will be incresed to 300MeV from 80MeV with both 324MHz spoke cavities and 648MHz ellipse cavities. It will be the first superconducting H linac as a RCS injector. It is required to keep a high stability of the injection beam energy.  
video icon
 
  please see instructions how to view/control embeded videos  
slides icon Slides FR1AA02 [2.179 MB]  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FR1AA06 Fully Automated Tuning and Recover of a High Power SCL 884
 
  • A.P. Shishlo
    ORNL, Oak Ridge, Tennessee, USA
  • C.C. Peters
    ORNL RAD, Oak Ridge, Tennessee, USA
 
  Funding: This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy.
Techniques have been developed for fast (less than one hour), fully automated tune-up a high power proton SCL, as well as fully automated recovery from a cavity failure with no human intervention. These methods have been developed and demonstrated at the SNS SCL but are applicable to hadron SCL operation in general and will be especially relevant to future ADS applications
 
video icon
 
  please see instructions how to view/control embeded videos  
slides icon Slides FR1AA06 [1.112 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-FR1AA06  
About • Received ※ 23 August 2022 — Revised ※ 26 August 2022 — Accepted ※ 01 September 2022 — Issue date ※ 04 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)