Proton and Ion Accelerators and Applications
Industrial and medical accelerators
Paper Title Page
MOPOPA22 High-Gradient Accelerating Structure for Hadron Therapy Linac, Operating at kHz Repetition Rates 126
 
  • S.V. Kutsaev, R.B. Agustsson, A.C. Araujo Martinez, A.Yu. Smirnov, S.U. Thielk
    RadiaBeam, Santa Monica, California, USA
  • V.A. Dolgashev
    SLAC, Menlo Park, California, USA
  • B. Mustapha, G. Ye
    ANL, Lemont, Illinois, USA
 
  Funding: This work was supported by the U.S. Department of Energy, Office of High Energy Physics, under STTR grant DE-SC0015717 and Accelerator Stewardship Grant, Proposal No. 0000219678.
Argonne National Laboratory and RadiaBeam have designed the Advanced Compact Carbon Ion Linac (ACCIL) for the acceleration of carbon an proton beams up to the energies of 450 MeV/u, required for image-guided hadron therapy. Recently, this project has been enhanced with the capability of fast tumour tracking and treatment through the 4D spot scanning technique. Such solution offers a promising approach to simultaneously reduce the cost and improve the quality of the treatment. In this paper, we report the design of an accelerating structure, capable of operating up to 1000 pulses per second. The linac utilizes an RF pulse compressor for use with commercially available klystrons, which will dramatically reduce the price of the system.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-MOPOPA22  
About • Received ※ 13 August 2022 — Revised ※ 19 August 2022 — Accepted ※ 29 August 2022 — Issue date ※ 01 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOGE01 Linac Design within HITRIplus for Particle Therapy 134
 
  • U. Ratzinger, H. Höltermann, B. Koubek, H. Podlech
    BEVATECH, Frankfurt, Germany
  • M. Vretenar
    CERN, Meyrin, Switzerland
 
  Funding: EU Horizon 2020 Grant agreement No 101008548
Within the EU H2020 project HITRIplus for the development of cancer therapy with heavy ions a linac was designed. It is evolving from the concept of the 4 European cancer therapy centers applying light ions up to carbon. The new linac will in its simpliest version allow C4+ - beam injection into synchrotrons at 5 A MeV, with high beam transmission and allowing currents up to 5 mA alpha - particles. An advanced ECR - ion source will inject into an RFQ - IH-DTL combination. The DTL concept allows upgraded versions for A/q - values up to two and with beam energies of 7.1 A MeV from IH - tank2 and 10 A MeV from IH-tank3. The higher beam injection energies for light ions allow a relaxed synchrotron operation at lowest magnetic field levels. A main argument for the DTL extensions however is an additional linac function as radioisotope facility driver. The 7.1 A MeV are especially defined for the clean production of 211At, which may play a future role in cancer therapy. The linac will allow for high duty factors - up to 10%, to fulfil the needs for efficient radioisotope production. Solid state amplifiers with matched design RF power levels (up to 600 kW for IH3) will be used.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-MOPOGE01  
About • Received ※ 24 August 2022 — Revised ※ 27 August 2022 — Accepted ※ 01 September 2022 — Issue date ※ 07 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOGE02 Status of the TOP-IMPLART Proton Linac 138
 
  • P. Nenzi, A. Ampollini, G. Bazzano, F. Fortini, L. Picardi, C. Ronsivalle, V. Surrenti, E. Trinca
    ENEA C.R. Frascati, Frascati (Roma), Italy
  • M.D. Astorino
    ENEA, Agenzia nazionale per le nuove tecnologie, l’energia e lo sviluppo economico sostenibile, Frascati, Italy
 
  The TOP-IMPLART (Intensity Modulated Proton Linear Accelerator for Radio Therapy) proton linac, is a RF pulsed linac, designed for protontherapy consisting of a low frequency (425 MHz) 7 MeV injector followed by a sequence of accelerating modules operating at 3 GHz under construction, assembly and test at the ENEA Frascati Research Center. The accelerator features also a vertical low energy (3-7 MeV) line for irradiation of samples in horizontal position. The segment currently completed includes 8 SCDTL modules up to 71 MeV grouped in two sections each one powered by a 10 MW klystron driven by a SCANDINOVA K100 modulator with a variable pulse length (1-5 us) at a repetition frequency of 25 Hz. The output current can be varied up to 30 uA. The beam is mainly used for radiobiology experiments and dosimetry systems tests, but the flexibility in beam characteristics makes it suitable also for applications different from protontherapy, as the irradiation of electronics components to verify their behavior in the space environment. In this work, the current status of the accelerator and beam characteristics measurements are presented with an overview of the experiments carried on it.  
poster icon Poster MOPOGE02 [7.021 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-MOPOGE02  
About • Received ※ 13 August 2022 — Revised ※ 27 August 2022 — Accepted ※ 02 September 2022 — Issue date ※ 12 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOGE03 Design of a Linear Accelerator for Isotope Production 142
 
  • A. Pisent, C. Baltador, L. Bellan, M. Comunian, J. Esposito, L. Ferrari, A. Galatà, F. Grespan
    INFN/LNL, Legnaro (PD), Italy
  • L. Celona
    INFN/LNS, Catania, Italy
  • P. Mereu
    INFN-Torino, Torino, Italy
 
  The recent accelerator developments allow the design of very efficient linear accelerators for various applications. The possible use of concepts, components and developments well established or recently achieved in larger projects will be illustrated, with some examples related to isotope production for medical applications.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-MOPOGE03  
About • Received ※ 14 August 2022 — Revised ※ 16 August 2022 — Accepted ※ 30 August 2022 — Issue date ※ 05 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOGE04 Cell Geometry Optimization for Dipole Kick Correction in a High-Frequency IH Structure 146
 
  • R. López López, P. Calvo, D. Gavela, J. Giner Navarro, G. Moreno, C. Oliver, J.M. Pérez Morales
    CIEMAT, Madrid, Spain
  • M.C. Battaglia, J.M. Carmona
    AVS, Elgoibar, Spain
  • A.M. Lombardi
    CERN, Meyrin, Switzerland
 
  Funding: CIEMAT
Given the asymmetry in the stem configuration of an IH-DTL structure, an electric dipole component is always present between drift tubes, and it is especially significant for reduced dimensions in high-frequency regimes. Here we study the effect of different modifications of the drift tubes geometry of a 750 MHz IH-DTL to eliminate the impact of the dipole component in the transverse beam dynamics. Tracking simulations through a single cell are also performed to assess the outcomes in particle’s trajectory offset and angle.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-MOPOGE04  
About • Received ※ 24 August 2022 — Revised ※ 27 August 2022 — Accepted ※ 31 August 2022 — Issue date ※ 04 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOGE05 Effect of High-Magnetic Field Region Geometry on the Efficiency of a 750 MHz IH Structure 150
 
  • G. Moreno, P. Calvo, D. Gavela, J. Giner Navarro, R. López López, C. Oliver, J.M. Pérez Morales
    CIEMAT, Madrid, Spain
  • M.C. Battaglia, J.M. Carmona
    AVS, Elgoibar, Spain
  • A.M. Lombardi
    CERN, Meyrin, Switzerland
 
  Funding: CIEMAT
High frequency structures generally translate to high efficiency performances thanks to reduced surfaces of the inner cavity. Two round-profiles geometry and some variations of two important parameters of a 750 MHz IH-DTL are proposed in this paper in order to improve shunt impedance performance regarding an existing solution with flat-walled cavity developed by CERN. The proposed designs are shaped such that they guarantee an easy connection of RF and vacuum auxiliaries. Electromagnetic simulations are checked with CST Microwave Studio.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-MOPOGE05  
About • Received ※ 20 August 2022 — Revised ※ 22 August 2022 — Accepted ※ 27 August 2022 — Issue date ※ 13 October 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOGE06 Automatic RF Conditioning of S-Band Cavities for Commercial Proton Therapy Linacs 154
 
  • S. Benedetti, M. Cerv, S. Magnoni, J.L. Navarro Quirante, S.G. Soriano
    AVO-ADAM, Meyrin, Switzerland
 
  The CERN spinoff company ADAM owned by Advanced Oncotherapy plc (AVO-ADAM) is completing the construction and testing of its first LIGHT (Linac for Image-Guided Hadron Therapy) system. Each LIGHT machine is composed by 20 accelerating modules: one 750 MHz RFQ, four 3 GHz Side-Coupled Drift Tube Linac (SCDTL) and 15 3 GHz Coupled-Cavity Linac (CCL). The company aims at delivering several similar LIGHT machines in the next years. A prerequisite to achieve such goal is the capability to complete the RF conditioning of the accelerating modules in a systematic and automatic way, with minimal inputs from RF engineers. In the past years ADAM developed an automatic conditioning system capable of increasing the main conditioning parameters ’ RF power, pulse width, repetition rate ’ while controlling the cavity breakdown rate and vacuum level. The system has been so far tested on about twenty accelerating structures with different brazing methodologies and RF accelerating voltages, proving its robustness. This paper discusses the ADAM automatic conditioning system design and its implementation.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-MOPOGE06  
About • Received ※ 13 August 2022 — Revised ※ 17 August 2022 — Accepted ※ 28 August 2022 — Issue date ※ 31 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOGE07 High Power RF Transmission Lines of the Light Proton Therapy Linac 158
 
  • J.L. Navarro Quirante, D. Aguilera Murciano, S. Benedetti, G. Castorina, C. Cochrane, G. De Michele, J. Douthwaite, A. Eager, S. Fanella, M. Giles, D. Kaye, V.F. Khan, J. Mannion, J. Morris, J.F. Orrett, N. Pattalwar, E. Rose, D. Soriano Guillén
    AVO-ADAM, Meyrin, Switzerland
 
  The LIGHT (Linac for Image-Guided Hadron Therapy) machine is designed to accelerate a proton beam up to 230 MeV to treat deep seated tumours. The machine consists of three different kinds of accelerators: RFQ (Radio-Frequency Quadrupole), SCDTL (Side Coupled Drift Tube Linac) and CCL (Coupled Cavity Linac). These accelerating structures are fed with RF power at 750 MHz (RFQ) and 3 GHz (SCDTLs and CCLs). This power is delivered to the accelerating structure via the high power RF transmission network (RF network). In addition, the RF network needs to offer other functionalities, like protection of the high RF power feeding stations, power splitting, phase and amplitude control and monitoring. The maximum power handling of the RF network corresponds to a peak RF power of 8 MW and an average RF power of 9 kW. It functions either in Ultra-High Vacuum (UHV) conditions at an ultimate operating pressure of 10-7 mbar, or under pressurized gas. The above listed requirements involve different challenges. In this contribution we exhibit the main aspects to be considered based on AVO experience during the commissioning of the RF network units.  
poster icon Poster MOPOGE07 [1.075 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-MOPOGE07  
About • Received ※ 22 August 2022 — Revised ※ 28 August 2022 — Accepted ※ 29 August 2022 — Issue date ※ 02 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOGE08 Low Level RF System of the Light Proton Therapy Linac 161
 
  • D. Soriano Guillén, S. Benedetti, M. Cerv, G. De Michele, Ye. Ivanisenko
    AVO-ADAM, Meyrin, Switzerland
 
  The LIGHT (Linac for Image-Guided Hadron Therapy) project was initiated to develop a modular proton accelerator delivering beam with energies up to 230 MeV for cancer therapy. The machine consists of three different kinds of accelerating structures: RFQ (Radio-Frequency Quadrupole), SCDTL (Side Coupled Drift Tube Linac) and CCL (Coupled Cavity Linac). These accelerating structures operate at 750 MHz (RFQ) and 3 GHz (SCDTL, CCL). The accelerator RF signals are generated, distributed, and controlled by a Low-Level RF (LLRF) system. The LIGHT LLRF system is based on a commercially available solution from Instrumentation Technologies with project specific customization. This LLRF system features high amplitude and phase stability, monitoring of the RF signals from the RF network and the accelerating structures at 200 Hz, RF pulse shaping over real-time interface integrated, RF breakdown detection, and thermal resonance frequency correction feedback. The LLRF system control is integrated in a Front-End Controller (FEC) which connects it to the LIGHT control system. In this contribution we present the main features of the AVO LLRF system, its operation and performance.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-MOPOGE08  
About • Received ※ 16 August 2022 — Revised ※ 25 August 2022 — Accepted ※ 28 August 2022 — Issue date ※ 05 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOGE09 Commissioning Status of the iBNCT Accelerator 164
MOOPA04   use link to see paper's listing under its alternate paper code  
 
  • M. Sato, Z. Fang, M.K. Fukuda, Y. Fukui, K. Futatsukawa, K. Ikegami, H. Kobayashi, C. Kubota, T. Kurihara, T. Miura, T. Miyajima, F. Naito, K. Nanmo, T. Obina, T. Shibata, T. Sugimura, A. Takagi
    KEK, Ibaraki, Japan
  • H. Kumada, Y. Matsumoto, Su. Tanaka
    Tsukuba University, Graduate School of Comprehensive Human Sciences, Ibaraki, Japan
  • N. Nagura, T. Ohba
    Nippon Advanced Technology Co., Ltd., Tokai, Japan
  • H. Oguri
    JAEA/J-PARC, Tokai-mura, Japan
  • T. Toyoshima
    ATOX, Ibaraki, Japan
 
  An accelerator-based boron neutron capture therapy (BNCT) has been studied intensively in recent years as one of the new cancer therapies after many clinical research with nuclear reactors. In the iBNCT project, the accelerator configuration consists of an RFQ and a DTL which have proven achievements in J-PARC. Meanwhile, a high duty factor is required to have a sufficient thermal neutron flux needed by BNCT treatments. After a failure of the klystron power supply occurred in Feb. 2019, beam operation was resumed in May 2020. To date, an average current of about 2 mA with the beam repetition rate of 75 Hz has been achieved with stable operation. Irradiation tests with cells and mice are ongoing together with characteristic measurements of the neutron beam. In parallel with that, we have been gradually improving the accelerator cooling-water system for further stability. In this contribution, the present status and prospects of the iBNCT accelerator are reported.  
slides icon Slides MOPOGE09 [0.852 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-MOPOGE09  
About • Received ※ 12 August 2022 — Revised ※ 19 August 2022 — Accepted ※ 02 September 2022 — Issue date ※ 30 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOGE10 A Medical Linac for Affordable Proton Therapy 167
MOOPA05   use link to see paper's listing under its alternate paper code  
 
  • S. Hunt, J. Adélise, W.D. Klotz, R. Seviour, E.D. van Garderen
    Alceli Limited, Aberdeen, United Kingdom
  • D. Correia
    PSI, Villigen PSI, Switzerland
 
  Proton Therapy (PT) was first proposed in the 1940s. Application of this knowledge was largely led over the next fifty years by accelerator laboratories, but now also by commercial companies. Availability of PT is increasing but is limited by three factors: facility size, prompt/induced radiation, and treatment cost. Compact cyclotrons/synchro cyclotrons for single-room facilities have reduced space requirements. linacs can avoid high radiation levels. Yet treatment costs have remained stubbornly high, driven largely by maintenance and staffing costs over the typical 20-30 year facility lifetime. Current technology cannot simultaneously reduce these three factors. By using a long linac, the Alceli approach sacrifices size limitations, to gain massive improvements in treatment cost and radiation levels. Quadrupling the length of a linac results in a sixteen-fold reduction in RF power per cavity. Along with other innovations in our design, this leads to a modular warm linac with distributed solid-state RF amplification, easy and cheap to manufacture and maintain, requiring no water cooling, and a treatment cost of 1/10th of current facilities, making PT much more affordable.  
slides icon Slides MOPOGE10 [1.934 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-MOPOGE10  
About • Received ※ 15 August 2022 — Revised ※ 23 August 2022 — Accepted ※ 29 August 2022 — Issue date ※ 01 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FR2AA02
The Future of Medical Linacs  
 
  • J.B. Farr
    Westdeutsches Protonentherapiezentrum, Essen, Germany
 
  There have been recent advances in the use of linacs for radiotherapy with the development of protontherapy linacs becoming commercial and the recent development of linacs for Very High Energy Electron (VHEE) therapy. This talk covers the medical advantages of such linacs as well as what the future requirements will be.  
video icon
 
  please see instructions how to view/control embeded videos  
slides icon Slides FR2AA02 [4.013 MB]  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)