Author: Jones, B.
Paper Title Page
MO1PA02 Beam Commissioning of Normal Conducting Part and Status of ESS Project 18
 
  • R. Miyamoto, C. Amstutz, S. Armanet, R.A. Baron, E.C. Bergman, A.K. Bhattacharyya, B.E. Bolling, W. Borg, S. Calic, M. Carroll, J. Cereijo García, J. Christensson, J.D. Christie, H. Danared, C.S. Derrez, E.M. Donegani, S. Ekström, M. Eriksson, M. Eshraqi, J.F. Esteban Müller, K. Falkland, A. Forsat, S. Gabourin, A. Garcia Sosa, A.A. Gorzawski, V. Grishin, P.O. Gustavsson, S. Haghtalab, V.A. Harahap, H. Hassanzadegan, W. Hees, J.J. Jamróz, A. Jansson, M. Jensen, B. Jones, M. Juni Ferreira, M. Kalafatic, I. Kittelmann, H. Kocevar, S. Kövecses de Carvalho, E. Laface, B. Lagoguez, Y. Levinsen, M. Lindroos, A. Lundmark, M. Mansouri, C. Marrelli, C.A. Martins, J.P.S. Martins, S. Micic, N. Milas, M. Mohammednezhad, R. Montaño, M. Muñoz, G. Mörk, D.J.P. Nicosia, B. Nilsson, D. Noll, A. Nordt, T. Olsson, L. Page, D. Paulic, S. Pavinato, A. Petrushenko, D.C. Plostinar, J. Riegert, A. Rizzo, K.E. Rosengren, K. Rosquist, M. Serluca, T.J. Shea, A. Simelio, S. Slettebak, H. Spoelstra, A.M. Svensson, L. Svensson, R. Tarkeshian, L. Tchelidze, C.A. Thomas, E. Trachanas, K. Vestin, R.H. Zeng, P.L. van Velze, N. Öst
    ESS, Lund, Sweden
  • C. Baltador, L. Bellan, M. Comunian, F. Grespan, A. Pisent
    INFN/LNL, Legnaro (PD), Italy
  • I. Bustinduy, A. Conde, D. Fernández-Cañoto, N. Garmendia, P.J. González, G. Harper, A. Kaftoosian, J. Martin, I. Mazkiaran, J.L. Muñoz, A.R. Páramo, S. Varnasseri, A.Z. Zugazaga
    ESS Bilbao, Derio, Spain
  • A.C. Chauveau, P. Hamel, O. Piquet
    CEA-IRFU, Gif-sur-Yvette, France
 
  The European Spallation Source, currently under construction in Lund Sweden, will be a spallation neutron source driven by a superconducting proton linac with a design power of 5 MW. The linac features a high peak current of 62.5 mA and long pulse length of 2.86 ms with a repetition rate of 14 Hz. The normal conducting part of the linac has been undergoing beam commissioning in multiple steps, and the main focus of the beam commissioning has been on bringing systems into operation, including auxiliary ones. In 2022, beam was transported to the end of the first tank of the five-tank drift tube linac. This paper provides a summary of the beam commissioning activities at ESS and the current status of the linac.  
video icon
 
  please see instructions how to view/control embeded videos  
slides icon Slides MO1PA02 [18.907 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-MO1PA02  
About • Received ※ 20 August 2022 — Revised ※ 27 August 2022 — Accepted ※ 01 September 2022 — Issue date ※ 21 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOJO09 High Power RF Conditioning of the ESS DTL1 356
 
  • F. Grespan, C. Baltador, L. Bellan, D. Bortolato, M. Comunian, E. Fagotti, M.G. Giacchini, M. Montis, A. Palmieri, A. Pisent
    INFN/LNL, Legnaro (PD), Italy
  • F. Grespan, B. Jones, L. Page, A.G. Sosa, E. Trachanas, R. Zeng
    ESS, Lund, Sweden
  • D.J.P. Nicosia
    CERN, Meyrin, Switzerland
 
  The first tank of Drift Tube Linac (DTL) for the European Spallation Source ERIC (ESS), delivered by INFN, has been installed in the ESS tunnel in Summer 2021. The DTL-1 is designed to accelerate a 62.5 mA proton beam from 3.62 MeV up to 21 MeV. It consists of 61 accelerating gaps, alternate with 60 drift tubes equipped with Permanent Magnet Quadrupole (PMQ) in a FODO lattice. The remaining drift tubes are equipped with dipole correctors (steerers), beam position monitors (BPMs) or empty. The total length of the cavity is 7.6 m and it is stabilized by post couplers. Two waveguide couplers feed the DTL with the 2.2 MW of RF power required for beam operation, equally divided by RF power losses and beam power. This paper first presents the main systems required for the DTL conditioning. Then it summarizes the main steps and results of this high power RF conditioning done at ESS to prepare the DTL for the consequent beam commissioning.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-TUPOJO09  
About • Received ※ 15 August 2022 — Revised ※ 19 August 2022 — Accepted ※ 29 August 2022 — Issue date ※ 15 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOJO10 Hardware Commissioning With Beam at the European Spallation Source: Ion Source to DTL1 360
TUOPA01   use link to see paper's listing under its alternate paper code  
 
  • B. Jones, R.A. Baron, C.S. Derrez, F. Grespan, V. Grishin, Y. Levinsen, N. Milas, R. Miyamoto, D.J.P. Nicosia, D. Noll, D.C. Plostinar, A.G. Sosa, E. Trachanas, R. Zeng
    ESS, Lund, Sweden
  • C. Baltador, L. Bellan, M. Comunian, F. Grespan, A. Palmieri
    INFN/LNL, Legnaro (PD), Italy
  • I. Bustinduy, N. Garmendia
    ESS Bilbao, Zamudio, Spain
  • L. Neri
    INFN/LNS, Catania, Italy
 
  The European Spallation Source (ESS) aims to build and commission a 2 MW proton linac ready for neutron production in 2025. The normal conducting section of the ESS linac is designed to accelerate a 62.5 mA proton beam to 90 MeV at 14 Hz. The section consists of a microwave ion source, Radio Frequency Quadrupole (RFQ) and 5-tank Drift Tube Linac (DTL). All sections are provided to ESS by in-kind partners across Europe. This paper reports the recent progress on the assembly, installation, testing and commissioning of the ESS normal conducting linac.  
slides icon Slides TUPOJO10 [2.397 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-TUPOJO10  
About • Received ※ 12 August 2022 — Revised ※ 15 August 2022 — Accepted ※ 28 August 2022 — Issue date ※ 03 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOJO14 Status of Testing and Commissioning of the Medium Energy Beam Transport Line of the ESS Normal Conducting Linac 376
 
  • A.G. Sosa, R.A. Baron, H. Danared, C.S. Derrez, E.M. Donegani, M. Eshraqi, V. Grishin, A. Jansson, M. Jensen, B. Jones, E. Laface, B. Lagoguez, Y. Levinsen, J.P.S. Martins, N. Milas, R. Miyamoto, D.J.P. Nicosia, D. Noll, D.C. Plostinar, T.J. Shea, R. Tarkeshian, C.A. Thomas, E. Trachanas, P.L. van Velze
    ESS, Lund, Sweden
  • I. Bustinduy, A. Conde, D. Fernández-Cañoto, N. Garmendia, P.J. González, G. Harper, A. Kaftoosian, J. Martin, I. Mazkiaran, J.L. Muñoz, A.R. Páramo, S. Varnasseri, A.Z. Zugazaga
    ESS Bilbao, Derio, Spain
 
  The latest beam commissioning phase of the Normal Conducting Linac at ESS delivered a proton beam through the Medium Energy Beam Transport (MEBT) into the first Drift Tube Linac (DTL) tank. The probe beam in MEBT consisted of 3.6 MeV protons of <6 mA, <5 microseconds pulse length and 1 Hz repetition rate. Following the delivery of the components at ESS in Lund in June 2019, the commissioning phase with the MEBT was completed in July 2022. In March 2022, the maximum beam current of 62.5 mA was transported up to the MEBT Faraday cup. This proceeding focuses on the status of MEBT including magnets, buncher cavities, scrapers and beam diagnostics designed and tested in collaboration with ESS Bilbao.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-TUPOJO14  
About • Received ※ 13 August 2022 — Revised ※ 19 August 2022 — Accepted ※ 31 August 2022 — Issue date ※ 01 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOPA04 First Beam Matching and Transmission Studies on the ESS RFQ 414
 
  • D. Noll, R.A. Baron, C.S. Derrez, E.M. Donegani, M. Eshraqi, F. Grespan, H. Hassanzadegan, B. Jones, Y. Levinsen, N. Milas, R. Miyamoto, D.C. Plostinar, A.G. Sosa, R. Zeng
    ESS, Lund, Sweden
  • A.C. Chauveau, O. Piquet
    CEA-IRFU, Gif-sur-Yvette, France
 
  The European Spallation Source will be driven by a 5 MW linear accelerator, producing 2.86 ms long proton beam pulses with a peak current of 62.5 mA at 14 Hz. Following the source commissioning in 2018 and 2019, the RFQ was successfully conditioned and subsequently commissioned with beam in 2021. In this paper, we will present results of studies on beam matching to the RFQ, both for low and high current beam modes, and will compare these results to model predictions.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-TUPOPA04  
About • Received ※ 26 August 2022 — Accepted ※ 05 September 2022 — Issue date ※ 05 September 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOPA05 RFQ Performance During RF Conditioning and Beam Commissioning at ESS 418
 
  • R. Zeng, G.S. Fedel, B. Jones, R. Miyamoto, D.J.P. Nicosia, D. Noll, A.G. Sosa, A.M. Svensson, E. Trachanas
    ESS, Lund, Sweden
  • M. Baudrier
    CEA-DRF-IRFU, France
  • A.C. Chauveau, M.J. Desmons, P. Hamel, O. Piquet
    CEA-IRFU, Gif-sur-Yvette, France
  • F. Grespan
    INFN/LNL, Legnaro (PD), Italy
 
  RFQ at ESS has been successfully gone through RF conditioning, RF re-conditioning and low duty cycle beam commissioning. RFQ fulfills required functions and overall performance is satisfactory. RF conditioning, three RF re-conditionings after LEBT intervention and beam commissioning will be reported and RFQ performance during these periods will be described. RFQ performance in a large extent is reflected by dynamics and interactions between RF, cavity and beam. Thanks to advanced hardware capabilities and intelligent software intelligence, observation of those dynamics and interactions are done in detailed level. Analysis of those dynamics and interaction will be introduced. Some techniques to deal with challenges resulted from those dynamics and interactions will also be discussed.  
poster icon Poster TUPOPA05 [25.281 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-TUPOPA05  
About • Received ※ 18 August 2022 — Revised ※ 25 August 2022 — Accepted ※ 31 August 2022 — Issue date ※ 05 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPORI29 Space Charge and Electron Confinement in High Current Low Energy Transport Lines: Experience and Simulations From IFMIF/EVEDA and ESS Commissioning 618
TUOPA08   use link to see paper's listing under its alternate paper code  
 
  • L. Bellan, M. Comunian, F. Grespan, A. Pisent
    INFN/LNL, Legnaro (PD), Italy
  • E.M. Donegani, M. Eshraqi, F. Grespan, B. Jones, E. Laface, Y. Levinsen, N. Milas, R. Miyamoto, D. Noll, D.C. Plostinar, A.G. Sosa
    ESS, Lund, Sweden
  • L. Neri
    INFN/LNS, Catania, Italy
 
  The mechanism of space charge compensation given by the residual gas ionization is a key factor for the emittance containment in the low energy beam transport (LEBT) lines of high intensity hadron injectors. A typical front end including a microwave Ion source, a LEBT and Radio Frequency Quadrupole (RFQ), is equipped with two repellers at each interface to prevent electrons from flowing back, to the source, or forward, to the RFQ. In this paper we will emphasize the importance of the ion Source and LEBT repellers on giving the appropriate boundary conditions for the space-charge compensation building-up mechanism. The theory and simulations are supported by experiments performed in the high intensity facility such as ESS and IFMIF/EVEDA.  
slides icon Slides TUPORI29 [1.633 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-TUPORI29  
About • Received ※ 23 August 2022 — Revised ※ 03 September 2022 — Accepted ※ 06 September 2022 — Issue date ※ 15 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPORI19 HSMDIS Performance on the ESS Ion Source 863
THOPA10   use link to see paper's listing under its alternate paper code  
 
  • L. Neri, G. Castro, L. Celona, S. Gammino, O. Leonardi, A. Miraglia
    INFN/LNS, Catania, Italy
  • C. Baltador, L. Bellan, M. Comunian, F. Grespan
    INFN/LNL, Legnaro (PD), Italy
  • B. Jones, E. Laface, R. Miyamoto, A.G. Sosa
    ESS, Lund, Sweden
 
  The ESS ion source, developed at INFN-LNS and installed at the ESS facility, is fully working and in operation for the linac beam commissioning. The commissioning of the source was done in Catania and in Lund showing high reproducibility related to the beam diagnostic parameters that can be measured with the subset of equipment currently available in Lund. The analysis of the data collected during the commissioning in Catania discloses the possibility to use a new source configuration named High Stability Microwave Discharge Ion Source (HSMDIS), able to improve beam stability and lower the beam emittance. This paper shows the capability to increase the beam current intensity, with preserving beam stability, by changing only the microwave power. Linearity was tested from 10 to 120 mA to be able to provide the lower values needed for the different phases of the accelerator commissioning and higher values for future accelerator development. The source stability is evaluated through intra-pulse stability and pulse-to-pulse stability.
Reference:
L. Neri, L. Celona "High stability microwave discharge ion sources" Sci Rep 12, 3064 (2022). https://doi.org/10.1038/s41598-022-06937-7
 
slides icon Slides THPORI19 [37.408 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-THPORI19  
About • Received ※ 24 August 2022 — Revised ※ 29 August 2022 — Accepted ※ 01 September 2022 — Issue date ※ 16 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)