Keyword: cyclotron
Paper Title Other Keywords Page
MOPOGE10 A Medical Linac for Affordable Proton Therapy proton, cavity, linac, radiation 167
 
  • S. Hunt, J. Adélise, W.D. Klotz, R. Seviour, E.D. van Garderen
    Alceli Limited, Aberdeen, United Kingdom
  • D. Correia
    PSI, Villigen PSI, Switzerland
 
  Proton Therapy (PT) was first proposed in the 1940s. Application of this knowledge was largely led over the next fifty years by accelerator laboratories, but now also by commercial companies. Availability of PT is increasing but is limited by three factors: facility size, prompt/induced radiation, and treatment cost. Compact cyclotrons/synchro cyclotrons for single-room facilities have reduced space requirements. linacs can avoid high radiation levels. Yet treatment costs have remained stubbornly high, driven largely by maintenance and staffing costs over the typical 20-30 year facility lifetime. Current technology cannot simultaneously reduce these three factors. By using a long linac, the Alceli approach sacrifices size limitations, to gain massive improvements in treatment cost and radiation levels. Quadrupling the length of a linac results in a sixteen-fold reduction in RF power per cavity. Along with other innovations in our design, this leads to a modular warm linac with distributed solid-state RF amplification, easy and cheap to manufacture and maintain, requiring no water cooling, and a treatment cost of 1/10th of current facilities, making PT much more affordable.  
slides icon Slides MOPOGE10 [1.934 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-MOPOGE10  
About • Received ※ 15 August 2022 — Revised ※ 23 August 2022 — Accepted ※ 29 August 2022 — Issue date ※ 01 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPORI02 New Injection Beamline for TRIUMF Cyclotron injection, diagnostics, vacuum, ion-source 545
 
  • M. Marchetto, R.A. Baartman, Y. Bylinskii, P.E. Dirksen, M. Ilagan, P.M. Jung, O. Law, R.E. Laxdal, S. Saminathan, V.A. Verzilov, V. Zvyagintsev
    TRIUMF, Vancouver, Canada
  • B. Dos Remedios
    UBC & TRIUMF, Vancouver, British Columbia, Canada
 
  The TRIUMF Ion Source and Injection System (ISIS) beamline is used to transport the 300 keV H beam from the ion source to the injection into the 500 MeV cyclotron. The vertical section of the beamline, upgraded in 2011, is very robust and reliable, while the horizontal section, now 50 years old, is very demanding in maintenance, and presents a high risk of downtime due to aging. The horizontal beamline is being re-designed with well proven optical concepts, and modern UHV technologies already used in the vertical section, and in the ARIEL RIB transport system; this will produce a more efficient system, easier to maintain and tune. The beamline will use electrostatic optical modules like matching, periodic, and 90-degree achromatic bend sections; updated elements include bunchers, a high-energy pulser, a 5:1 selector, and a new set of diagnostics. A crucial aspect of the new beamline is a magnetic shield, to compensate the cyclotron stray field, comprised of a mu-metal in-vacuum liner allowing HV feedthroughs and diagnostics insertion without breaking the shield continuity. The new injection beamline will be controlled via EPICS. The paper will present the status of the project.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-TUPORI02  
About • Received ※ 23 August 2022 — Revised ※ 30 August 2022 — Accepted ※ 03 September 2022 — Issue date ※ 15 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)