Author: Junquera, T.
Paper Title Page
MOPOGE19 Preliminary Study on the Cryogenic Control System Within RF Superconductive Linac Projects 197
 
  • H. Sibileau, M.L. Beniken
    ACS, Orsay, France
  • T. Junquera
    Accelerators and Cryogenic Systems, Orsay, France
  • D. Masson
    ISII-TECH, Saint-Etienne-du-Rouvray, France
 
  Several RF Superconductive LINAC projects are underway in different laboratories around the world, with various objectives such as research in physics, irradiation tests, production of radioisotopes for medical purposes. Superconducting operation of the accelerating cavities requires them to be maintained at cryogenic temperatures (2K - 4K) by the use of cryogenic fluids. This requires a complete cryogenic control system, including sensors, actuators, local controllers and PLCs. We describe the process by which the preliminary design of the cryogenic control system for the accelerator’s cryomodules and valve boxes may be built. It starts with the functional and performance requirements of the system, followed by the definition of use cases and the study of the necessary cryogenic instrumentation. This leads to a preliminary design of the architecture of the cryogenic control system using Siemens hardware, as well as cryogenic sequences describing standard phases of operation of the LINAC. We also discuss how to take advantage of the modularity of cryomodules for control system implementation and some recent developments in PLC simulation.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-MOPOGE19  
About • Received ※ 24 August 2022 — Revised ※ 01 September 2022 — Accepted ※ 11 September 2022 — Issue date ※ 16 October 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOGE04 An Approach for Component-Level Analysis of Cryogenic Process in Superconducting LINAC Cryomodules 487
SUPCJO03   use link to see paper's listing under its alternate paper code  
 
  • C. Lhomme
    IJCLab, ORSAY, France
  • D. Berkowitz Zamora, M.D. Grosso Xavier
    SCK•CEN, Brussels, Belgium
  • F. Chatelet, P. Duthil, H. Saugnac
    Université Paris-Saclay, CNRS/IN2P3, IJCLab, Orsay, France
  • F. Dieudegard, C. Lhomme
    ACS, Orsay, France
  • T. Junquera
    Accelerators and Cryogenic Systems, Orsay, France
 
  Powerful superconducting linear accelerators feature accelerating sections consisting in a series of cryomod-ules (CM), each hosting superconducting radiofrequency (SRF) cavities cooled by a cryogenic process. Despite the extensive instrumentation used for the tests and valida-tion of the prototype cryomodules, it is usually very complex to link the measured global thermodynamic efficiency to the individual component performance. Previous works showed methods for assessing the global efficiency and even for allocating performances to sets of components, but few went down to a component level. For that purpose, we developed a set of techniques based on customized instrumentation, on dedicated test proto-cols, and on model-based analysis tools. In practice, we exposed the components to various operating conditions and we compared the measured data to the results from a detailed dynamic component model at the same condi-tions. This method was applied to the cryogenic debug-ging phase of the tests of the MINERVA prototype cry-omodule, which, despite the liquid helium shortage, led to an extensively detailed characterisation, for its valida-tion towards the serial construction.  
poster icon Poster TUPOGE04 [1.234 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-TUPOGE04  
About • Received ※ 20 August 2022 — Revised ※ 21 August 2022 — Accepted ※ 29 August 2022 — Issue date ※ 01 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)