Paper | Title | Page |
---|---|---|
MOPORI09 | Linear Accelerator for Demonstration of X-Ray Radiotherapy with Flash Effect | 243 |
MOOPA01 | use link to see paper's listing under its alternate paper code | |
|
||
Funding: This project is funded by NIH, award number NIH R01CA255432. Emerging evidence indicates that the therapeutic window of radiotherapy can be significantly increased using ultra-high dose rate dose delivery (FLASH), by which the normal tissue injury is reduced without compromising tumor cell killing. The dose rate required for FLASH is 40 Gy/s or higher, 2-3 orders of magnitude greater than conventional radiotherapy. Among the major technical challenges in achieving the FLASH dose rate with X-rays is a linear accelerator that is capable of producing such a high dose rate. We will discuss the design of a high dose rate 18 MeV linac capable of delivering 100 Gy/s of collimated X-rays at 20 cm. This linac is being developed by a RadiaBeam/UCLA collaboration for a preclinical system as a demonstration of the FLASH effect in small animals. |
||
Slides MOPORI09 [0.954 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-MOPORI09 | |
About • | Received ※ 19 August 2022 — Revised ※ 22 August 2022 — Accepted ※ 29 August 2022 — Issue date ※ 02 September 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |