Paper | Title | Page |
---|---|---|
MOPOPA21 | RF Beam Sweeper for Purifying In-Flight Produced Rare Isotope Beams at ATLAS Facility | 122 |
|
||
Funding: This work was supported by the U.S. Department of Energy, Office of Nuclear Physics, under SBIR grant DE-SC0019719. RadiaBeam is developing an RF beam sweeper for puri-fying in-flight produced rare isotope beams at the ATLAS facility of Argonne National Laboratory. The device will operate in two frequency regimes ’ 6 MHz and 12 MHz ’ each providing a 150 kV deflecting voltage, which dou-bles the capabilities of the existing ATLAS sweeper. In this paper, we present the design of a high-voltage RF sweeper and discuss the electromagnetic, beam dynamics, and solid-state power source for this device. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-MOPOPA21 | |
About • | Received ※ 14 August 2022 — Revised ※ 19 August 2022 — Accepted ※ 29 August 2022 — Issue date ※ 01 September 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPOPA22 | High-Gradient Accelerating Structure for Hadron Therapy Linac, Operating at kHz Repetition Rates | 126 |
|
||
Funding: This work was supported by the U.S. Department of Energy, Office of High Energy Physics, under STTR grant DE-SC0015717 and Accelerator Stewardship Grant, Proposal No. 0000219678. Argonne National Laboratory and RadiaBeam have designed the Advanced Compact Carbon Ion Linac (ACCIL) for the acceleration of carbon an proton beams up to the energies of 450 MeV/u, required for image-guided hadron therapy. Recently, this project has been enhanced with the capability of fast tumour tracking and treatment through the 4D spot scanning technique. Such solution offers a promising approach to simultaneously reduce the cost and improve the quality of the treatment. In this paper, we report the design of an accelerating structure, capable of operating up to 1000 pulses per second. The linac utilizes an RF pulse compressor for use with commercially available klystrons, which will dramatically reduce the price of the system. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-MOPOPA22 | |
About • | Received ※ 13 August 2022 — Revised ※ 19 August 2022 — Accepted ※ 29 August 2022 — Issue date ※ 01 September 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPORI08 | Beam Mapping Linearity Improvement in Multi-Dimensional Bunch Shape Monitor | 239 |
|
||
Funding: This work was supported by the U.S. Department of Energy , Office of Basic Energy Sciences, under contract DE-SC0020590. RadiaBeam is developing a Bunch Shape Monitor (BSM) with improved performance that incorporates three major innovations. First, the collection efficiency is im-proved by adding a focusing field between the wire and the entrance slit. Second, a new design of an RF deflector improves beam linearity. Finally, the design is augmented with both a movable wire and a microwave deflecting cavity to add functionality and enable measuring the transverse profile as a wire scanner. In this paper, we pre-sent the design of the BSM and its sub-systems. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-MOPORI08 | |
About • | Received ※ 24 August 2022 — Revised ※ 01 September 2022 — Accepted ※ 02 September 2022 — Issue date ※ 09 September 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |