Author: Petry, N.F.
Paper Title Page
MOPOGE12 Cavity R&D for HBS Accelerator 174
SUPCPA03   use link to see paper's listing under its alternate paper code  
 
  • N.F. Petry, K. Kümpel, S. Lamprecht, O. Meusel, H. Podlech, M. Schwarz
    IAP, Frankfurt am Main, Germany
 
  The demand for neutrons of various types for research is growing day by day worldwide. To meet the growing demand the Jülich High Brilliance Neutron Source (HBS) is in development. It is based on a high power linear proton accelerator with an end energy of 70 MeV and a proton beam current of 100 mA. The main part of the accelerator consists of about 45 CH-type cavities. As the current beam dynamic layout is still work in progress the number of cavities can change for the final design. For this beam dynamic layout the design of the CH-type cavities was optimized to handle the high accelerating gradient. The results of the performance of the CH-type cavities will be presented in this paper.  
poster icon Poster MOPOGE12 [1.286 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-MOPOGE12  
About • Received ※ 17 August 2022 — Revised ※ 26 August 2022 — Accepted ※ 29 August 2022 — Issue date ※ 15 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPORI05 Beam Dynamic Simulations for the DTL Section of the High Brilliance Neutron Source 556
SUPCRI09   use link to see paper's listing under its alternate paper code  
 
  • S. Lamprecht, M. Droba, K. Kümpel, O. Meusel, N.F. Petry, H. Podlech, M. Schwarz, C. Zhang
    IAP, Frankfurt am Main, Germany
 
  As various experimental reactors in Europe are already or will be decommissioned over the next years, new neutron sources will be necessary to meet the demand for neutrons in research and development. The High Brilliance Neutron Source is an accelerator driven neutron source planned at the Forschungszentrum Jülich. The accelerator will accelerate a proton beam of 100 mA up to an end energy of 70 MeV, using 45 normal conducting CH-type cavities. Due to the high beam current, the beam dynamics concept requires special care. In this paper, the current status of the beam dynamics for the drift tube linac is presented.  
poster icon Poster TUPORI05 [0.917 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-TUPORI05  
About • Received ※ 23 August 2022 — Revised ※ 24 August 2022 — Accepted ※ 31 August 2022 — Issue date ※ 01 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)