Author: Helsper, J.
Paper Title Page
TUPOPA25 Design, Manufacturing, Assembly, Testing, and Lessons Learned of the Prototype 650 MHz Couplers 462
 
  • J. Helsper, S.K. Chandrasekaran, F. Furuta, B.M. Hanna, S. Kazakov, J.P. Ozelis, K.S. Premo, N. Solyak, G. Wu
    Fermilab, Batavia, Illinois, USA
 
  Funding: Work supported, in part, by the U.S. Department of Energy, Office of Science, Office of High Energy Physics, under U.S. DOE Contract No. DE-AC02-07CH11359.
Six 650 MHz high-power couplers will be integrated into the prototype High Beta 650 MHz (HB650) cryomodule for the PIP-II project at Fermilab. The design of the coupler is described, including design optimizations from the previous generation. This paper then describes the coupler life-cycle, including manufacturing, assembly, testing, conditioning and the lessons learned at each stage.
 
poster icon Poster TUPOPA25 [2.695 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-TUPOPA25  
About • Received ※ 24 August 2022 — Revised ※ 25 August 2022 — Accepted ※ 29 August 2022 — Issue date ※ 02 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOGE12 Final Design of the Pre-Production SSR2 Cryomodule for PIP-II Project at Fermilab 511
 
  • J. Bernardini, C. Boffo, M. Chen, J. Helsper, M. Kramp, F.L. Lewis, T.H. Nicol, M. Parise, D. Passarelli, V. Roger, G.V. Romanov, B. Squires, M. Turenne
    Fermilab, Batavia, Illinois, USA
 
  Funding: Work supported by Fermi Research Alliance, LLC under Contract No. DEAC02- 07CH11359 with the United States Department of Energy, Office of Science, Office of High Energy Physics.
The present contribution reports the design of the pre-production Single Spoke Resonator Type 2 Cryomodule (ppSSR2 CM), developed in the framework of the PIP-II project at Fermilab. The innovative design is based on a structure, the strongback, which supports the coldmass from the bottom, stays at room temperature during operations, and can slide longitudinally with respect to the vacuum vessel. The Fermilab style cryomodule developed for the prototype Single Spoke Resonator Type 1 (pSSR1) and the prototype High Beta 650 MHz (pHB650) cryomodules is the baseline of the current design, which paves the way for production SSR1 and SSR2 cryomodules for the PIP-II linac. The focus of this contribution is on the results of calculations and finite element analysis performed to optimize the critical components of the cryomodule: vacuum vessel, strongback, thermal shield, and magnetic shield.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-TUPOGE12  
About • Received ※ 24 August 2022 — Revised ※ 26 August 2022 — Accepted ※ 30 August 2022 — Issue date ※ 02 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOGE15 Prototype HB650 Transportation Validation for the PIP-II Project 523
 
  • J.P. Holzbauer, S. Cheban, C.J. Grimm, J. Helsper, R. Thiede, A.D. Wixson
    Fermilab, Batavia, Illinois, USA
  • R. Cubizolles
    CEA-IRFU, Gif-sur-Yvette, France
  • M.T.W. Kane
    STFC/DL, Daresbury, Warrington, Cheshire, United Kingdom
 
  Funding: Work supported by the Fermi National Accelerator Laboratory, managed and operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy.
The PIP-II Project at Fermilab is centered around a superconducting 800 MeV proton linac to upgrade and modernize the Fermilab accelerator complex, allowing increased beam current to intensity frontier experiments such as LBNF-DUNE. PIP-II includes strong international collaborations, including the delivery of 12 cryomodules from European labs to FNAL (3 from STFC-UKRI in the UK and 9 from CEA in France). The transatlantic shipment of these completed modules is identified as a serious risk for the project. To mitigate this risk, a rigorous and systematic process has been developed to design and validate a transport system, including specification, procedures, logistics, and realistic testing. This paper will detail the engineering process used to manage this effort across the collaboration and the results of the first major validation testing of the integrated shipping system prior to use with a cryomodule.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-TUPOGE15  
About • Received ※ 13 August 2022 — Revised ※ 19 August 2022 — Accepted ※ 30 August 2022 — Issue date ※ 15 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)