Author: Ateş, A.
Paper Title Page
MOPOGE11 Update on the First 3D Printed IH-Type Linac Structure - Proof-of-Concept for Additive Manufacturing of Linac RF Cavities 170
 
  • H. Hähnel, A. Ateş, U. Ratzinger
    IAP, Frankfurt am Main, Germany
 
  Funding: This research was funded by BBMBF grant number 05P21RFRB2.
Additive manufacturing ("AM" or "3D printing") has become a powerful tool for rapid prototyping and manufacturing of complex geometries. A 433 MHz IH-DTL cavity has been constructed to act as a proof of concept for additive manufacturing of linac components. In this case, the internal drift tube structure has been produced from 1.4404 stainless steel using AM. We present the concept of the cavity as well as first results of vacuum testing, materials testing and low level rf measurements. Vacuum levels sufficient for linac operation have been reached with the AM linac structure.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-MOPOGE11  
About • Received ※ 22 August 2022 — Accepted ※ 28 August 2022 — Issue date ※ 02 September 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPORI01 A Multi-Camera System for Tomographic Beam Diagnostics 215
 
  • A. Ateş, G. Blank, H. Hähnel, U. Ratzinger
    IAP, Frankfurt am Main, Germany
 
  A prototype of a beam-induced residual gas fluorescence monitor (BIF) has been developed and successfully tested at the Institute of Applied Physics (IAP) of the Goethe University Frankfurt. This BIF is based on ten single-board cameras inserted into the vacuum and directed onto the beam axis. The overall goal is to study the beam with tomography algorithms at a low energy beam transport section. Recently, we tested the detector with a 60keV, 15mA proton beam at 20Hz and 1ms puls length. In this paper we present the ongoing investigations on image processing and application of the algebraic reconstruction technique (ART).  
poster icon Poster MOPORI01 [1.826 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-MOPORI01  
About • Received ※ 20 August 2022 — Revised ※ 21 August 2022 — Accepted ※ 28 August 2022 — Issue date ※ 01 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOJO08 Upgrade and Commissioning of the 60 keV Low Energy Beam Transport Line for the Frankfurt Neutron Source FRANZ 352
 
  • H. Hähnel, A. Ateş, G. Blank, M.S. Breidt, D. Bänsch, R. Gössling, T. Metz, H. Podlech, U. Ratzinger, A. Rüffer, K. Volk, C. Wagner
    IAP, Frankfurt am Main, Germany
  • R.H. Hollinger, C. Zhang
    GSI, Darmstadt, Germany
  • H. Podlech
    HFHF, Frankfurt am Main, Germany
 
  The Low Energy Beam Transport line (LEBT) for the Frankfurt Neutron Source (FRANZ) has been redesigned to accommodate a 60 keV proton beam. Driven by a CHORDIS ion source, operating at 35 kV, a newly designed electrostatic postaccelerator has beeen installed to reach the desired beam energy of 60 keV. Additional upgrades to the beamline include two steerer pairs, several optical diagnostics sections and an additional faraday cup. We present the results of beam commissioning up to the point of RFQ injection. Emittance measurements were performed to prepare matching to the RFQ and improve the beam dynamics model of the low energy beamline. Due to the successful operation of the beamline at 60 keV, retrofitting of the RFQ for the new energy has been initiated.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-TUPOJO08  
About • Received ※ 22 August 2022 — Revised ※ 28 August 2022 — Accepted ※ 01 September 2022 — Issue date ※ 05 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPORI30 Application of Permanent Magnets in Solenoid and Quadrupole Focusing 622
 
  • J.D. Kaiser, A. Ateş, H. Hähnel, U. Ratzinger
    IAP, Frankfurt am Main, Germany
 
  Permanent magnets can be used to design compact high gradient focusing elements for particle accelerators. Based on cheap industrial standard Neodym permanent magnets, design studies for Solenoids and Quadrupoles are presented. The Solenoid design consists of three segments, where the outer segments possess a radial magnetization and the inner segments an axial magnetization. This increases the mean field strength in comparison to a singlet hollow cylinder solenoid. The quadrupole design consists of 16 block magnets and is designed to be rather simplistic. The casing consists of two half shells, which can be easily mounted around a beam pipe. For a quadrupole triplet configuration the influence of different geometric parameters on beam transport regarding focusing strength and emittance growth is investigated. Furthermore, a variation of the quadrupole design was mounted in vacuum in a triplet configuration. Using custom 3D-printed mounts for small raspberry pi cameras the beam could be observed inside the quadrupoles. A first prototype was constructed  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-TUPORI30  
About • Received ※ 13 August 2022 — Revised ※ 17 August 2022 — Accepted ※ 02 September 2022 — Issue date ※ 04 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)