Author: Akintola, A.E.T.
Paper Title Page
MOPOGE25 Rf Measurement and Characterisation of European Spallation Source Cavities at UKRI-STFC Daresbury Laboratory and DESY 212
 
  • P.A. Smith, A.E.T. Akintola, K.D. Dumbell, M.J. Ellis, S. Hitchen, P.C. Hornickel, C.R. Jenkins, A.J. May, P.A. McIntosh, K.J. Middleman, A.J. Moss, S.M. Pattalwar, M.D. Pendleton, J.O.W. Poynton, A.E. Wheelhouse, S. Wilde
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • G. Jones, M. Lowe, D.A. Mason, G. Miller, J. Mutch, A. Oates, J.T.G. Wilson
    STFC/DL, Daresbury, Warrington, Cheshire, United Kingdom
  • K.J. Middleman
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • D. Reschke, L. Steder, M. Wiencek
    DESY, Hamburg, Germany
 
  The Accelerator Science and Technology Centre (ASTeC) is responsible for delivering 88 High Beta (HB) cavities as part of the European Spallation Source (ESS) facility in Sweden. The bulk Niobium Superconducting Radio Frequency (SRF) cavities operate at 704 MHz. They have been fabricated in industry and are currently being tested at Daresbury Laboratory and Deutsches Elektronen-Synchrotron (DESY). They will then be delivered to Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA) Saclay, France for integration into cryomodules. To date 50 cavities have been conditioned and evaluated and 36 cavities have been delivered to CEA. This paper discusses the experiences and testing of the cavities performed to date at both sites  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-MOPOGE25  
About • Received ※ 24 August 2022 — Revised ※ 29 August 2022 — Accepted ※ 01 September 2022 — Issue date ※ 04 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOJO15 Commissioning of UKRI-STFC SRF Vertical Test and HPR Reprocessing Facility 380
 
  • M.D. Pendleton, A.E.T. Akintola, R.K. Buckley, G. Collier, K.D. Dumbell, M.J. Ellis, S. Hitchen, P.C. Hornickel, G. Hughes, C.R. Jenkins, A.J. May, P.A. McIntosh, K.J. Middleman, A.J. Moss, S.M. Pattalwar, J.O.W. Poynton, P.A. Smith, A.E. Wheelhouse, S. Wilde
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • G. Jones, M. Lowe, D.A. Mason, G. Miller, C. Mills, J. Mutch, A. Oates, J.T.G. Wilson
    STFC/DL, Daresbury, Warrington, Cheshire, United Kingdom
 
  Mark Pendleton, et al. The UK’s first and only vertical test facility and associated cleanroom reprocessing suite has been developed, commissioned, and entered steady-state operations at the UKRI-STFC Daresbury Laboratory. The facility is capable of 2 K testing of 3 jacketed SRF cavities in a horizontal configuration per 2-week test cycle. We report on the associated cryogenic, RF, UHV, mechanical, cleanroom, and HPR infrastructure. SRF cavity workflows have been developed to meet the requirements of the ESS high beta cavity project within a newly developed quality management system, SuraBee, in accordance with ISO9001. To support standardisation of measurements across the collaboration, reference cavities have been measured for cross-reference between CEA, DESY, and UKRI-STFC. We further report on commissioning objectives, observations, and continuous improvement activities.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-TUPOJO15  
About • Received ※ 24 August 2022 — Revised ※ 31 August 2022 — Accepted ※ 05 September 2022 — Issue date ※ 08 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOGE07 Magnetic Field Measurements and Shielding at the UKRI-STFC Daresbury Laboratory SRF Vertical Test Facility 495
 
  • A.E.T. Akintola, A.R. Bainbridge, S. Hitchen, A.J. May, S.M. Pattalwar, P.A. Smith
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • M. Lowe, D.A. Mason, A.D. Shabalina
    STFC/DL, Daresbury, Warrington, Cheshire, United Kingdom
 
  A novel vertical test facility has been developed, commissioned, and entered steady-state operations at the UKRI-STFC Daresbury Laboratory. The cryostat is designed to test 3 jacketed superconducting RF cavities in a horizontal configuration in a single cool-down run at 2 K. A 2-year program is currently underway to test ESS high-beta cavities. Upon completion of this program, the facility will undertake a testing program for PIP-II HB650 cavities. In the current configuration, a solution combining passive and active magnetic shielding has been validated for the ESS requirement of field attenuation to the level of <1 uT, although continuous field measurements are not provided. This paper reports the implementation of passive and active shielding, along with simulation and experimental measurements thereof.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-TUPOGE07  
About • Received ※ 22 August 2022 — Revised ※ 27 August 2022 — Accepted ※ 30 August 2022 — Issue date ※ 01 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOGE09 Steady-State Cryogenic Operations for the UKRI-STFC Daresbury SRF Vertical Test Facility 501
 
  • A.J. May, A.E.T. Akintola, R.K. Buckley, G. Collier, K.D. Dumbell, S. Hitchen, P.C. Hornickel, G. Hughes, C.R. Jenkins, S.M. Pattalwar, M.D. Pendleton, P.A. Smith
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
 
  A novel vertical test facility has been developed, commissioned, and entered steady-state operations at the UKRI-STFC Daresbury Laboratory. The cryostat is designed to test 3 jacketed superconducting RF cavities in a horizontal configuration in a single cool-down run at 2 K. The cavities are cooled with superfluid helium filled into their individual helium jackets. This reduces the liquid helium consumption by more than 70% in comparison with the conventional facilities operational elsewhere. The facility is currently undertaking a 2-year program to qualify 84 high-beta SRF cavities for the ESS (European Spallation Source) as part of the UK’s in-kind contribution. This paper reports on the steady-state operations, along with a detailed discussion of the cryogenic performance of the facility, including that of the cryoplant.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-TUPOGE09  
About • Received ※ 13 August 2022 — Revised ※ 21 August 2022 — Accepted ※ 02 September 2022 — Issue date ※ 04 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOGE10 A Final Acceptance Test Kit for Superconducting RF Cryomodules 504
 
  • A.J. May, A.E.T. Akintola, S.M. Pattalwar, A. White
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
 
  UKRI-STFC Daresbury Laboratory is currently undertaking several projects involving assembly of superconducting RF cryomodules, including HL-LHC crab cavities and PIP-II HB650 cavities. As part of the final acceptance tests before shipping of the modules, extensive leak testing, pressure testing, and thermal cycling with gaseous and liquid must be performed. A Final Acceptance Test kit (FAT-kit) has been developed to support these tests. The FAT-kit, designed as a single portable unit, sits as an interface module between the cryomodule under test and the required utilities (liquid cryogen supply and return, gaseous cryogen supply and return, warm gas supply and return, vacuum pumps, leak detectors, etc.). The kit features a valve manifold to make or break connections to, from, and between circuits in the cryomodule, safety groupings to provide protection for the circuits as required, and various instrumentation. We report here on the design and commissioning of the kit.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-TUPOGE10  
About • Received ※ 23 August 2022 — Revised ※ 26 August 2022 — Accepted ※ 30 August 2022 — Issue date ※ 15 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOGE05 Some Interesting Observations During Vertical Test on ESS-HB-704 SRF Cavities 812
 
  • K.D. Dumbell, A.E.T. Akintola, R.K. Buckley, M.J. Ellis, S. Hitchen, P.C. Hornickel, C.R. Jenkins, J. Lewis, A.J. May, P.A. McIntosh, K.J. Middleman, A.J. Moss, S.M. Pattalwar, M.D. Pendleton, P.A. Smith, A.E. Wheelhouse, S. Wilde
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • M.D. Hancock, J. Hathaway, C. Hodgkinson, G. Jones, M. Lowe, D.A. Mason, G. Miller, J. Mutch, A. Oates, J.T.G. Wilson
    STFC/DL, Daresbury, Warrington, Cheshire, United Kingdom
 
  The vertical test stand in use at Daresbury has three cavities loaded horizontally at different heights. The jacketed cavities are supplied with liquid helium from a header tank at the top of the configuration. A few cavities have been tested in different positions and the results have been analysed. The pressure of the helium inside the jacketed cavities is affected by the height of the liquid helium column above the jacket and using results from earlier analysis during cool-down enables the pressure of the cavity to be determined from the frequency of operation. Analysis of the effects may allow for corrections to the frequency to be made. In addition to the above observations there have also been some challenges in the operation at higher power as the phase of the self-excited loop driving the system, has been seen to change. This paper discusses some of the observation, analysis of those observations and challenges that are being addressed in the continuing use of this facility.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-THPOGE05  
About • Received ※ 10 August 2022 — Revised ※ 13 August 2022 — Accepted ※ 31 August 2022 — Issue date ※ 15 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)