Author: Zennaro, R.
Paper Title Page
TUPORI16 The PSI Positron Production Project 577
SUPCJO09   use link to see paper's listing under its alternate paper code  
 
  • N. Vallis, B. Auchmann, P. Craievich, M. Duda, H. Garcia Rodrigues, J. Kosse, F. Marcellini, M. Schaer, R. Zennaro
    PSI, Villigen PSI, Switzerland
 
  Funding: CHART (Swiss Accelerator Research and Technology)
The PSI Positron Production project (P3 or P-cubed) is a demonstrator for a novel positron source for FCC-ee. The high current requirements of future colliders can be compromised by the extremely high positron emittance at the production target and consequent poor capture and transport to the damping ring. However, recent advances in high-temperature superconductors allow for a highly efficient matching of such an emittance through the use a solenoid around the target delivering a field over 10 T on-axis. Moreover, the emittance of the matched positron beam can be contained through large aperture RF cavities surrounded by a multi-Tesla field generated by conventional superconducting solenoids, where simulations estimate a yield higher by one order of magnitude with respect to the state-of-the-art. The goal of P3 is to demonstrate this basic principle by implementing the aforementioned solenoids into a prototype positron source based on a 6 GeV electron beam from the SwissFEL linac, two RF capture cavities and a beam diagnostics section.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-TUPORI16  
About • Received ※ 15 August 2022 — Revised ※ 24 August 2022 — Accepted ※ 02 September 2022 — Issue date ※ 09 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TH2AA02 RF System Performance in the SwissFEL Linac 679
 
  • C.D. Beard, J. Alex, H.-H. Braun, P. Craievich, Z. Geng, N. Hiller, R. Kalt, C. Kittel, T. Lippuner, T.G. Lucas, M. Pedrozzi, E. Prat, S. Reiche, T. Schietinger, W.T. Tron, D. Voulot, R. Zennaro
    PSI, Villigen PSI, Switzerland
 
  The Hard X-ray FEL machine SwissFEL at the Paul Scherrer Institut in Switzerland is commissioned and transiting to user operation smoothly. FEL operation requires stringent requirements for the beam stability at the linac output, such as the electron bunch arrival time, peak current and beam energy. Among other things, a highly stable RF system is required to guarantee the beam stability. RF performance often dominates the overall performance and availability of FELs, and for this reason the SwissFEL RF system has been designed based on the state-of-the-art technologies that have enabled excellent RF stability, resulting in an arrival time jitter of ~10 fs rms and relative beam energy stability of 10-4 rms. This paper aims to provide an understanding of the peak performance of the RF systems and to highlight possible limitation currently faced, focusing on the S-, C- and X-Band systems.  
video icon
 
  please see instructions how to view/control embeded videos  
slides icon Slides TH2AA02 [4.813 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-TH2AA02  
About • Received ※ 20 August 2022 — Revised ※ 26 August 2022 — Accepted ※ 30 August 2022 — Issue date ※ 02 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)