Paper |
Title |
Page |
MOPOGE13 |
Acceleration Efficiency of TE-Mode Structures for Proton Linacs |
177 |
|
- J. Tamura, Y. Kondo, T. Morishita
JAEA/J-PARC, Tokai-mura, Japan
- F. Naito, M. Otani
KEK, Tokai, Ibaraki, Japan
|
|
|
Various types of cavity structures are typically used in hadron linacs, depending on the energy range of the beam particle. This is especially the case in a normal-conducting linac, because the cavity’s acceleration efficiency varies with the velocity of the synchronous particle. For low-energy proton acceleration, while Alvarez drift-tube linacs (DTLs) are the most prevalent, TE-mode accelerating structures, which could also be called H-mode structures, are also widely used immediately after an initial radiofrequency quadrupole linac (RFQ). At present, the representative structures of TE modes are interdigital H-mode (IH) DTL and crossbar H-mode (CH) DTL, which are based on the TE11-mode pillbox cavity and TE21-mode pillbox cavity, respectively. In this presentation, acceleration efficiency of TE-mode structures including higher-order TE-modes such as TE31 and TE41 was comparatively reviewed with Alvarez DTL. This study shows that IH-DTL and CH-DTL have a larger shunt impedance than Alvarez DTL for proton acceleration below 10 MeV, and furthermore for the TEm1-mode structures, the rotational symmetry of the electric field improves with increasing angular index m.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-LINAC2022-MOPOGE13
|
|
About • |
Received ※ 30 August 2022 — Revised ※ 06 September 2022 — Accepted ※ 14 September 2022 — Issue date ※ 26 September 2022 |
Cite • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
MOPOGE14 |
Current Status of the Spoke Cavity Prototyping for the JAEA-ADS Linac |
180 |
|
- J. Tamura, Y. Kondo, F. Maekawa, S.I. Meigo, B. Yee-Rendón
JAEA/J-PARC, Tokai-mura, Japan
- T. Dohmae, E. Kako, H. Sakai, K. Umemori
KEK, Ibaraki, Japan
|
|
|
The Japan Atomic Energy Agency (JAEA) has proposed an accelerator-driven subcritical system (ADS) to efficiently reduce high-level radioactive waste generated at nuclear power plants. One of the challenging R&D aspects of ADS is the reliability of the accelerator. In preparation for the full-scale design of the CW proton linac for the JAEA-ADS, we are now prototyping a low-beta (around 0.2) single spoke cavity. Since there is no experience in Japan in manufacturing a superconducting spoke cavity, prototyping and performance testing of the cavity is essential to ensure the feasibility of the JAEA-ADS linac. In the Japanese fiscal year 2021, we have started welding cavity parts together. By preliminarily examining the electron beam welding conditions, each press-formed niobium part was joined with a smooth welding bead. The current status of the spoke cavity prototyping for the JAEA-ADS linac is presented.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-LINAC2022-MOPOGE14
|
|
About • |
Received ※ 01 August 2022 — Revised ※ 21 August 2022 — Accepted ※ 14 September 2022 — Issue date ※ 26 September 2022 |
Cite • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|