Paper | Title | Page |
---|---|---|
MOPORI05 | Application of Virtual Diagnostics in the FEBE Clara User Area | 231 |
|
||
Funding: This work is supported by the AWAKE-UK phase II project funded by STFC and the STFC Cockcroft core grant No. ST/G008248/1. Successful user experiments at particle beam facilities are dependent upon the awareness of beam characteristics at the interaction point. Often, properties are measured beforehand for fixed operation modes; users then rely on the long-term stability of the beam. Otherwise, diagnostics must be integrated into a user experiment, costing resources and limiting space in the user area. This contribution proposes the application of machine learning to develop a suite of virtual diagnostic systems. Virtual diagnostics take data at easy to access locations, and infer beam properties at locations where a measurement has not been taken, and often cannot be taken. Here the focus is the user area at the planned Full Energy Beam Exploitation (FEBE) upgrade to the CLARA facility (UK). Presented is a simulation-based proof-of-concept for a variety of virtual diagnostics. Transverse and longitudinal properties are measured upstream of the user area, coupled with the beam optics parameters leading to the user area, and input into a neural network, to predict the same parameters within the user area. Potential instrumentation for FEBE CLARA virtual diagnostics will also be discussed. |
||
Poster MOPORI05 [0.613 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-MOPORI05 | |
About • | Received ※ 17 August 2022 — Revised ※ 22 August 2022 — Accepted ※ 28 August 2022 — Issue date ※ 01 September 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPORI06 | Improvements on the Modified Nomarski Interferometer for Measurements of Supersonic Gas Jet Density Profiles | 235 |
|
||
Funding: This work is supported by the AWAKE-UK phase II project funded by STFC, the STFC Cockcroft core grant No. ST/G008248/1 and the HL-LHC-UK phase II project funded by STFC under Grant Ref: ST/T001925/1. For supersonic gas jet based beam profile monitors such as that developed for the High Luminosity Large Hadron Collider (HL-LHC) upgrade, density profile is a key characteristic. Due to this, non-invasive diagnostics to study the jet’s behaviour have been designed. A Nomarski interferometer was constructed to image jets 30 um to 1 mm in diameter and study changes in their density. A microscope lens has been integrated into the original interferometer system to capture phase changes on a much smaller scale than previous experiments have achieved. This contribution presents the optimisation and results gained from this interferometer. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-MOPORI06 | |
About • | Received ※ 14 August 2022 — Revised ※ 24 August 2022 — Accepted ※ 29 August 2022 — Issue date ※ 01 September 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |