Author: Setiniyaz, S.
Paper Title Page
TUPORI20 The Impact of Beam Loading Transients on the RF System and Beam Breakup Instabilities in Energy Recovery Linacs 593
 
  • S. Setiniyaz
    Lancaster University, Lancaster, United Kingdom
  • R. Apsimon, M.J.W. Southerby
    Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
  • P.H. Williams
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
 
  In multi-turn Energy Recovery Linacs (ERLs), the filling pattern describes the order that which bunches are injected into the ERL ring. The filling patterns and recombination schemes together can create various beam loading patterns/transients, which can have a big impact on the RF system, namely the cavity fundamental mode voltage, required RF power, and beam breakup instability. In this work, we demonstrate one can lower the cavity voltage fluctuation and rf power consumption by carefully choosing the right transient by using an analytical model and simulation.  
poster icon Poster TUPORI20 [0.659 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-TUPORI20  
About • Received ※ 19 August 2022 — Revised ※ 28 August 2022 — Accepted ※ 29 August 2022 — Issue date ※ 31 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WE2AA02 RELIEF: Tanning of Leather with e-beam 645
 
  • R. Apsimon, D.A. Turner
    Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
  • K.A. Dewhurst
    CERN, Meyrin, Switzerland
  • S. Setiniyaz
    Lancaster University, Lancaster, United Kingdom
  • R. Seviour
    University of Huddersfield, Huddersfield, United Kingdom
  • W.R. Wise
    University of Northampton, Northampton, United Kingdom
 
  Funding: STFC through the grant reference ST/S002189/1, and the Cockcroft Institute core grant, STFC grant reference ST/P002056/1.
Tanning of leather for clothing, shoes and handbags uses potentially harmful chemicals that are often run off into local water supplies or require a large carbon footprint to safely recover these pollutants. In regions of the world with significant leather production this can lead to a significant environmental impact. However recent studies have suggested that leather can instead be tanned using a combination of electron beams in a process inspired by the industrial crosslinking of polymers, to drastically reduce the quantity of wastewater produced in the process; thereby resulting in a reduced environmental impact as well as potential cost savings on wastewater treatment. In this talk, initial studies of leather tanning will be presented as well as accelerator designs for use in leather irradiation.
 
video icon
 
  please see instructions how to view/control embeded videos  
slides icon Slides WE2AA02 [1.803 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-WE2AA02  
About • Received ※ 02 August 2022 — Revised ※ 16 August 2022 — Accepted ※ 31 August 2022 — Issue date ※ 16 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)