Paper | Title | Page |
---|---|---|
TUPOPA09 | RF Measurements and Tuning of the CERN 750 MHz ELISA-RFQ for Public Exhibition | 426 |
|
||
Over the last few years CERN has successfully designed, built and commissioned the smallest RFQ to date, the one meter long PIXE-RFQ operating at 750 MHz. Its compactness offers a unique opportunity for education and public presentation of the accelerator community: A duplicate machine called ELISA-RFQ (Experimental Linac for Surface Analysis) will be exhibited in the Science Gateway, CERN’s upcoming scientific education and outreach center. It will allow the public to approach within a few centimeters a live proton beam injected into air, which is visible to the naked eye. The construction of the ELISA-RFQ has been completed in 2022. In this paper, we present the results of low-power RF measurements as well as field and frequency tuning. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-TUPOPA09 | |
About • | Received ※ 14 August 2022 — Revised ※ 18 August 2022 — Accepted ※ 30 August 2022 — Issue date ※ 01 September 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPOPA10 | Beam Dynamics and RF Design Studies for the New RFQ for CERN Linac4 Upgrade | 430 |
|
||
The 352 MHz Linac4-RFQ is the first rf accelerating structure of the CERN accelerator complex, accelerating an H− beam to 3 MeV. After successful commissioning in 2013, superficial vane damage has been observed in 2020. In view that the RFQ is a single point of failure, in parallel to the production of a near identical spare (RFQ2), design studies on a longer-term upgrade have been launched: Linac4-RFQ3. Main goals are to achieve a design with higher beam acceptance, reduced beam losses, and reduced RF breakdown rate. Two versions of RFQ are under study: a conventional RFQ built by brazing copper, as well as an RFQ with titanium vane tips (brazed on copper). High-gradient experiments suggest that titanium vane tips support higher surface fields compared to copper, up to 40 MV/m, and are more resistant against beam irradiation. In this paper, we present beam dynamics and rfdesign of both variants of RFQ3. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-TUPOPA10 | |
About • | Received ※ 12 August 2022 — Revised ※ 19 August 2022 — Accepted ※ 29 August 2022 — Issue date ※ 02 September 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPOJO08 | RF Design of Traveling-Wave Accelerating Structures for the FCC-ee Pre-injector Complex | 707 |
|
||
Funding: This project received funding from the EU’s Horizon 2020 research program (grant No 951754), and was done under the auspices of CHART (Swiss Accelerator Research and Technology Collaboration). The linacs of the FCCee (Future Circular Electron-Positron Collider) injector complex will both provide the drive beam for positron production and accelerate nominal electron and positron beams up to 6 GeV. Several linacs comprise different traveling-wave (TW) accelerating structures fulfilling the beam dynamics and rf constraints. Notably, high-phase advance large-aperture structures accelerate the positron beam at low energies. All TW structures are rotationally symmetric for easier production. Long-range wakes are damped by HOM detuning. Operating mode and HOM parameters were calculated based on lookup tables and analytic formulas, allowing for rapidly scanning large parameter spaces. In this paper, we present both methodology and realization of the rf design of the TW structures including their pulse compressors. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-THPOJO08 | |
About • | Received ※ 24 August 2022 — Accepted ※ 08 September 2022 — Issue date ※ 15 September 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |