Paper |
Title |
Page |
MOPOGE06 |
Automatic RF Conditioning of S-Band Cavities for Commercial Proton Therapy Linacs |
154 |
|
- S. Benedetti, M. Cerv, S. Magnoni, J.L. Navarro Quirante, S.G. Soriano
AVO-ADAM, Meyrin, Switzerland
|
|
|
The CERN spinoff company ADAM owned by Advanced Oncotherapy plc (AVO-ADAM) is completing the construction and testing of its first LIGHT (Linac for Image-Guided Hadron Therapy) system. Each LIGHT machine is composed by 20 accelerating modules: one 750 MHz RFQ, four 3 GHz Side-Coupled Drift Tube Linac (SCDTL) and 15 3 GHz Coupled-Cavity Linac (CCL). The company aims at delivering several similar LIGHT machines in the next years. A prerequisite to achieve such goal is the capability to complete the RF conditioning of the accelerating modules in a systematic and automatic way, with minimal inputs from RF engineers. In the past years ADAM developed an automatic conditioning system capable of increasing the main conditioning parameters ’ RF power, pulse width, repetition rate ’ while controlling the cavity breakdown rate and vacuum level. The system has been so far tested on about twenty accelerating structures with different brazing methodologies and RF accelerating voltages, proving its robustness. This paper discusses the ADAM automatic conditioning system design and its implementation.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-LINAC2022-MOPOGE06
|
|
About • |
Received ※ 13 August 2022 — Revised ※ 17 August 2022 — Accepted ※ 28 August 2022 — Issue date ※ 31 August 2022 |
Cite • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
MOPOGE07 |
High Power RF Transmission Lines of the Light Proton Therapy Linac |
158 |
|
- J.L. Navarro Quirante, D. Aguilera Murciano, S. Benedetti, G. Castorina, C. Cochrane, G. De Michele, J. Douthwaite, A. Eager, S. Fanella, M. Giles, D. Kaye, V.F. Khan, J. Mannion, J. Morris, J.F. Orrett, N. Pattalwar, E. Rose, D. Soriano Guillén
AVO-ADAM, Meyrin, Switzerland
|
|
|
The LIGHT (Linac for Image-Guided Hadron Therapy) machine is designed to accelerate a proton beam up to 230 MeV to treat deep seated tumours. The machine consists of three different kinds of accelerators: RFQ (Radio-Frequency Quadrupole), SCDTL (Side Coupled Drift Tube Linac) and CCL (Coupled Cavity Linac). These accelerating structures are fed with RF power at 750 MHz (RFQ) and 3 GHz (SCDTLs and CCLs). This power is delivered to the accelerating structure via the high power RF transmission network (RF network). In addition, the RF network needs to offer other functionalities, like protection of the high RF power feeding stations, power splitting, phase and amplitude control and monitoring. The maximum power handling of the RF network corresponds to a peak RF power of 8 MW and an average RF power of 9 kW. It functions either in Ultra-High Vacuum (UHV) conditions at an ultimate operating pressure of 10-7 mbar, or under pressurized gas. The above listed requirements involve different challenges. In this contribution we exhibit the main aspects to be considered based on AVO experience during the commissioning of the RF network units.
|
|
|
Poster MOPOGE07 [1.075 MB]
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-LINAC2022-MOPOGE07
|
|
About • |
Received ※ 22 August 2022 — Revised ※ 28 August 2022 — Accepted ※ 29 August 2022 — Issue date ※ 02 September 2022 |
Cite • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|